Abstract

During the ISM study in the year 2007 first water quality simulations of the Berlin river Spree (stretch Charlottenburg) under consideration of combined sewer overflows (CSO) from the drainage system had been carried out. The period of September 2005 was simulated. A good correlation of simulation results with water quality measurements could only be observed for those days where the model boundary conditions were clearly defined (spot samples at the inflowing streams). However, these spot samples are carried out only once a month. Given the simulation period of one month and the temporal resolution of 15 minutes this data availability for the inflowing streams is not sufficient. Even more, some parameters had to be assessed entirely since no measurements were available. The data situation was especially critical for the inflow of the Landwehrkanal into the river Spree. No continuous measurement data was available for the following parameters: water temperature, oxygen content, pH and conductivity. For these parameters hydrographs had been assumed according to those at gauge Mühlendammschleuse with an offset calculated by the difference between the spot sampling at Landwehrkanal and the continuous values at Mühlendammschleuse. Furthermore, during the simulations within the ISM study a second storm event with overflows could not be considered since the simulation of the drainage system (software INFOWORKS CS) carried out by Berliner Wasserbetriebe was not yet available. The objective of the water quality simulations carried out within SAM-CSO was to take into account the full boundary conditions for the Landwehrkanal (continuous data now available). By comparison with the former simulation results the relevance of the inflow Landwehrkanal on the processes in the river Spree is shown. A second simulation was carried out with meteorological data of high temporal resolution. Former simulations were conducted with daily averages for e.g. air temperature, wind speed, etc. The influence of the temporal resolution of the input data on the diurnal hydrographs of different water quality parameters was analysed (focus on water temperature and dissolved oxygen). Finally, for the last simulation the data for the additional CSO event on 16-17 September 2005 was used (simulated by Berliner Wasserbetriebe with INFOWORKS CS). The results show that considering meteorological data of high temporal resolution and continuous data for the boundary condition Landwehrkanal have a significant influence on the quality of the water quality simulation results for river Spree, especially for the parameters oxygen content, pH and conductivity. Now, for September 2005 simulation results are available that are based on the best set of data that is currently available for the studied river stretch.

Abstract

Eine optimierte Abwasserbehandlung führte seit den 1990er Jahren zu stark abnehmenden, kontinuierlich aus Punktquellen in die Vorfluter eingeleiteten Nährstofffrachten (HEINZMANN, 1998, SENSTADT, 2001), wodurch sich die Wasserqualität der aufnehmenden Gewässer Berlins merklich verbesserte. Episodische Belastungen durch Mischwasserentlastungen stellen jedoch weiterhin eine bedeutende Ursache einer herabgesetzten Wasser- und Sedimentqualität und eine der wichtigsten Managementaufgaben für die Berliner Stadtspree und der Kanäle dar (vgl. LESZINSKI ET AL., 2006, RIECHEL 2009). Hinsichtlich des von der EU-WRRL geforderten guten ökologischen und chemischen Zustandes der Binnengewässer bzw. des guten ökologischen Potenzials für stark veränderte und künstliche Gewässer, stellt die Lebensraumfunktion für die aquatischen Lebensgemeinschaften der Berliner Gewässer das wesentliche gewässerinterne Schutzziel dar. Neben dem erheblichem ökologischen Gefährdungspotenzial, das insbesondere von extremen Ereignissen der Mischwasserentlastung ausgeht, reduzieren vorrangig hydromorphologische Defizite (Stauhaltung, Uferbefestigung, Sohleintiefung, etc.) die Lebensraumqualität für die aquatischen Lebensgemeinschaften. Aufgrund der Schifffahrtsnutzung der Berliner Spree und der Kanäle stellen Wellenschlag und Sunk- und Schwalleffekte während Schiffspassagen eine zusätzliche, bedeutende Belastung dar (vgl. LESZINSKI ET AL., 2006). Wie in der Studie „Immissionsorientierte Bewertung von Mischwasserentlastungen in Tieflandflüssen“ (LESZINSKI ET AL., 2007) dargelegt, liegen die in Laboruntersuchungen ermittelten Ansprüche bzw. Toleranzen hinsichtlich der Wasserqualität für die Fischarten und Arten wirbelloser Bodenorganismen der Berliner Spree und der Kanäle in einem vergleichbaren Bereich (JACOB ET AL., 1984, LAMMERSEN, 1997). Die Herleitung von Gütestandards hinsichtlich der Wasserqualität für die Fischfauna schließt somit den Schutz der Lebensgemeinschaft der wirbellosen Bodenorganismen mit ein. Ebenso besteht bei beiden Organismengruppen ein grundsätzlicher, vergleichbarer funktioneller Zusammenhang zwischen der Ausprägung der Lebensgemeinschaft und der hydromorphologischen und strukturellen Lebensraumausstattung des Gewässers (z.B. SHELDON, 1968, KARR & SCHLOSSER, 1978, MINSHALL, 1984; MINSHALL & ROBINSON, 1998, TANIGUCHI & TOKESHI, 2004). So korrelieren Artenzahl und Diversität beider Organismengruppen höchst signifikant negativ mit dem Ausbaugrad der Ufer. Als Resultat der verschiedenen Belastungen findet sich in der Berliner Stadtspree eine extreme Dominanz von wenigen sehr anspruchslosen, toleranten Arten. Folglich sind Verbesserungen des ökologischen Zustandes und des Besiedlungspotenzials für wirbellose Bodenorganismen und Fische neben der Reduzierung der negativen Auswirkungen der Mischwasserentlastung, vorrangig durch Aufwertung der Uferstrukturen zu erreichen. Strukturelle Aufwertungen der Ufer müssen zusätzlich die hydrodynamische Belastung durch den schiffsinduzierten Wellenschlag berücksichtigen, um einerseits das Besiedlungspotenzial zu erhöhen, andererseits die Ufer vor Erosion zu schützen. Die vorliegende Studie gibt Hinweise auf die Möglichkeiten und Grenzen einer Revitalisierung der Berliner Stadtspree und der Kanäle am Beispiel der Fischfauna, indem sie die wesentlichen Belastungen und deren Auswirkungen skizziert. Potenzielle Maßnahmen zur Aufwertung der Uferstruktur sollten aufgrund der oben angesprochenen sehr ähnlichen Wirkmechanismen zwischenUmweltausprägungen und Zusammensetzung der Lebensgemeinschaften beiden, wirbellosen Bodenorganismen und Fischen, zu Gute kommen. Zur Beurteilung möglicher struktureller Maßnahmen wird zunächst davon ausgegangen, dass die negativen Auswirkungen der Mischwasserentlastung derart minimiert werden können, dass sie keine akute Beeinträchtigung der Wasserqualität und der aquatischen Lebensgemeinschaften mehr verursacht. Des Weiteren soll beurteilt werden, ob durch solche Maßnahmen ein Lebensraum für Fischarten geschaffen werden kann, die höhere Ansprüche an die Sauerstoffbedingungen im Gewässer haben als die aktuelle Lebensgemeinschaft.

Pawlowsky-Reusing, E. , Schumacher, F. , Schroeder, K. , Meier, I. , Heinzmann, B. (2008): Integrated modelling of the impact from Combined Sewer Overflows on the water quality of slow-flowing lowland rivers.

p 8 In: 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK, 2008. Edinburgh, Scotland. 31.8. - 5.9.2008

Abstract

The centre of Berlin, Germany, is drained by a combined sewer system. The receiving waters Havel and Spree are characterized by low flow velocities and an increased risk of eutrophication. High demands towards a reduction of the emission loads of combined sewer overflows (CSOs) down to 20 % of the mean annual runoff load of TSS, COD and BOD5 are formulated by the Berlin Water Authority. Therefore a pollution control plan will be carried out until the year 2020 that will lead to a storage enlargement of the combined sewer system by 100 %. To assess if these efforts will lead to the expected water quality of the receiving water regarding the objectives of the European Water Framework Directive, a method will be developed to evaluate in advance the achievable improvement. Starting from the actual status of the water body this model based method should allow for an estimation, if the good status will be achieved after the realization of the measures of storage upgrading in the sewer system. The study currently concentrates on the integrated water quality modelling of the high dynamic processes in the sewer system and the receiving water. The paper focuses on the simulation of oxygen concentration in the receiving water.

Schroeder, K. , Leszinski, M. , Schumacher, F. , Pawlowsky-Reusing, E. , Heinzmann, B. (2008): A water quality based method for the assessment of CSO impact on receiving waters in Berlin.

p 1 In: 3rd Joint Specialty Conference of WEF, JSWA and EWA "Sustainable Water Management in Response to 21st Century Pressures", Munich. München. 6. - 7.5.2008

Abstract

Wet weather discharges from urban catchments are widely recognised as a major cause of unsatisfactory receiving water quality. Among stormwater discharges the impact from combined sewer overflows (CSO) plays a prominent role. The dynamic character of the discharge events lead to particular stress on the water bodies. Legal requirements for CSO follow the precautionary principle and usually set emission standards. Within the Urban Waste Water Treatment Directive 91/271/EEC of May 1991 it is written that “member states shall decide on measures to limit pollution from storm water overflows”. The directive does not give standards but solely proposes that “such measures could be based on dilution rates or capacity in relation to dry weather flow, or could specify a certain acceptable number of overflows per year”. The European Water Framework Directive 2000/60/EC of October 2000 goes beyond and asks for a combined approach to river basin management. On the source side, it requires that all existing technology-driven source-based controls must be implemented as a first step. On the effects side, it provides a new overall objective of good status for all waters, and requires that where the measures taken on the source side are not sufficient to achieve these objectives, additional ones are required. To assess the impact of CSO on the Berlin receiving water the research projects MONITOR and SAM-CSO are carried out in cooperation between Kompetenzzentrum Wasser Berlin, the Berliner Wasserbetriebe and the Senate Department of Environment Berlin. The objective of the projects is to identify and make available receiving water parameters (immission parameters) for the decision making process concerning the optimisation of the urban drainage system. Further on, a method for the evaluation of measures of combined water treatment on the basis of these immission criteria will be defined. The evaluation shall be based on both, available measurement data from the sewer system and the receiving water and simulations with an integrated model for the coupled drainage-river-system. The paper will present the methodology of the project. Special focus is on the description of the processes within the Berlin water bodies (stagnant lowland rivers) and the compilation of relevant physical-chemical and ecological parameters for the assessment of CSO.

Abstract

Dr. Schumacher Ingenieurbüro für Wasser und Umwelt wurde im Rahmen des Projektes SAM-CSO beauftragt, eine Langzeitsimulation der hydraulischen Verhältnisse in der Stauhaltung Charlottenburg (Spree und Kanäle) für die Abflussjahre 2002 bis 2007 durchzuführen. Diese Simulation erfolgt mit der Software HYDRAX und ist die Grundlage für die Simulation der Gewässergüteprozesse, die dann mit der Software QSIM durchgeführt wird. Da bisher im Rahmen des Projektes eine Gewässergütesimulation lediglich für den September 2005 erfolgte (Fokus auf 2 Starkregenereignisse mit Mischwasserüberlauf), konnten noch keine allgemeinen Aussagen zur Güte der Simulation des Gewässerbasiszustandes über längere Zeiträume getroffen werden. Die Simulation des Basiszustandes (unter Vernachlässigung der Mischwassereinleitungen) und die Anpassung des Modells an die Berliner Gewässerverhältnisse ist ein wichtiger Schritt, bevor die spezifische Situation während Mischwasserüberlauf betrachtet werden kann. Zusammenfassend ist festzuhalten, dass nach Korrektur der Zuflüsse über die Spree eine in Bezug auf den Referenzpegel Sophienwerder stimmige Durchflussbilanz erreicht werden konnte. Die aufgrund der instationären Berechnung verbleibende Bilanzdifferenz spiegelt gut das (im Vergleich zu den Stauhaltungen Mühlendamm/Kleinmachnow, Spandau oder Brandenburg mit ihren großen Seen) geringe Retentionsvermögen der Stauhaltung Charlottenburg wider. Unter Berücksichtigung der Messunsicherheit werden auch die Wasserstände für alle Durchflussverhältnisse in guter, für die anschließende Gütesimulation mit mehr als hinreichender Genauigkeit, berechnet. Hingewiesen sei darauf, dass bei einer Änderung der Zuflusssumme, z.B. durch die Berücksichtigung der bisher inaktiv gesetzten Mischwassereinleitungen, auch ein erneuter Bilanzausgleich vorgenommen werden sollte, da der Stauhaltung derzeit die vernachlässigten Größen indirekt über die Korrektur der Spreezuflüsse im Rahmen des Bilanzausgleichs zufließen. Folgerung für das Projekt: (i) Die Grundlage (Hydraulik) für die Gewässergütesimulation des Basiszustandes der Spree liegt nun vor. (ii) Die Gewässergütesimulation wird in Abstimmung mit Herrn Dr. Schumacher am KWB durchgeführt. Es erfolgt eine Identifikation, welche in QSIM simulierten Prozesse an die Berliner Situation angepasst werden müssen und in welcher Weise. (iii) Daraufhin erfolgt die Anpassung in Kooperation mit der BfG (Herrn Kirchesch).

Abstract

Urban water courses are considerably degraded in terms of their hydrology, riparian and channel morphology, substrate heterogeneity and habitat features as well as water and sediment quality. In addition, the combined sewer overflows and the ecotoxicological impacts of its components lead to a change of the physical-chemical and microbial mass balance affecting the biocenoses of higher trophic levels. Combined sewer overflows are therefore an additional stress to the ecological status of the urban course of the River Spree and of its channels, which is damaged already by both preload and background load of the aquatic environment. With regard to the assessment of the ecological water status, the European Water Framework Directives gives priority to the aquatic biocenoses in their capacity as ecological quality parameters. Against this background, an immission-oriented approach for the assessment of combined sewer overflows has to describe also their impacts on the biocenoses of the macrozoobenthos, the fish fauna, the macrophytes and the phytoplancton. These biocenoses are protected against the harmful impacts resulting from CSO only if the modification of their physical and chemical environment is avoided or reduced to an ecologically tolerable level respectively. In case that unfavourable impacts cannot be completely eliminated, the degree of impairment and the number of damaging CSO discharge events, which appear to be acceptable, should be defined. The present study is based on the bibliographic study „ Impact of urban use on the mass balance and the biocoenosis of lowland rivers under special consideration of combined sewer overflows” and deals with the assessment of CSO impacts on the ecological situation of the urban Spree and the channels (Cyprinid water bodies). In general, the immissionoriented assessment of CSO impact on the biocenoses (macrozoobenthos, fish fauna) requires the observation of the intensity, duration and frequency of occurrence of the individual events based on the assumption that, due to the background pollution, top priority is currently given to the acute CSO impacts. Requirements for the protection of aquatic biocenoses are developed with regard to the target parameters oxygen and ammonium/ammoniac and ecological tolerances of the biocenotic subjects of protection, which are strongest influenced by CSO. Initially, it is discussed to what extent the already existing results from laboratory investigations can be transferred to field situations. Next to the commonly accepted threshold values for oxygen concentrations during continuous persistent loads, particular requirements for the oxygen balance in case of peak loads are formulated.

Abstract

The objective of the studies performed in the scope of the Integrated Sewage Management (ISM) project on combined sewer overflows in Berlin, Germany was to develop methods that would make it possible to assess wastewater management measures performed under the city’s water management permit as well as more sophisticated strategies (e.g., global real time control) through the application of water body-related criteria. For this purpose, a preliminary study was first performed to characterize the underlying water body-specific processes and hydraulic, physical, chemical and ecological parameters relevant to the status of Berlin’s surface waters (LESZINSKI et al., 2007a). The second step involved the development of a method for water quality-oriented assessment of wastewater management measures (LESZINSKI ET AL., 2007b). In addition to the already recognized thresholds for dissolved oxygen concentration during continuous, long-term water load conditions, particular focus was placed on formulating requirements for oxygen demand under peak load conditions. Ammonia toxicity due to sewage input, another important stress factor for aquatic ecosystems, was also analyzed and threshold values for both chronic and acute peak ammonia loads were defined. The results of the third phase of this research are described in this report. Two numerical simulation models (for urban drainage networks and surface waters) were combined and the feasibility of the developed method was evaluated based on the case of a combined sewer overflow event documented by the surface water monitoring. The simulations were performed using InfoWorksTM CS hydrological/hydrodynamic urban drainage network modeling software (ISM model) and the GERRIS/HYDRAX/Qsim unsteady ecosystem modeling system. The latter model was developed by the Federal Institute of Hydrology in Koblenz and is used by the Senate Department of Health, Environment and Consumer Protection (SenGesUmV). The present report describes the theoretical principles of the utilized models, the base of data available for analysis of the selected event, and the assumptions made in cases of missing input data for hydraulic modeling as well as for the water quality simulations. The one-dimensional hydraulic modeling results for the branched surface water system of the reach Berlin-Charlottenburg demonstrated that the hydraulic conditions can be simulated with satisfactory accuracy using the current data. In the case of water temperature, it was also possible to achieve a high degree of agreement between the measured and computed values in spite of the lack of highresolution temporal input data from the tributaries (Landwehr Canal, Panke River, BerlinSpandau Ship Canal). However, this was not the case for dissolved oxygen concentration, the main parameter used for evaluation of combined water treatment. The DOC simulations computed using input data based on a monthly sampling interval did not show satisfactory agreement with the online measurements in the water system. Dry-weather biological processes, which were associated with high-level, short-term oxygen enrichment or consumption, could not be depicted in the simulations. After completion of the water quality simulations, the effect of variation of individual input parameters was assessed. This analysis showed that no significant improvement of agreement with the measured values could be achieved by adjusting the assumptions for individual parameters (chlorophyll-a and BSB5). In the case of ammonia, the second most important parameter, the available sampling data from the tributaries in the investigated water system were collected only once a month, if at all. Therefore, it cannot be expected that the temporal distribution of this parameter was correctly reflected by the model. The number of validation measurements taken within the water system was also insufficient. Summarizing the results of the study of the linked urban drainage/surface water quality model, which was tested for the first time, it can be concluded that InfoWorks CS and GERRIS/HYRDRAX/Qsim provide problem-oriented simulation tools for reaching the objective of ISM study of assessing various scenarios for reduction of impacts from combined sewer overflows. By contrast, the available data are deficient and do not allow to adjust and calibrate the models to meet the specific needs of this task, particularly in light of the fact that short-term effects of combined sewer overflows are to be analyzed.

Abstract

Urban water courses are considerably degraded in terms of their hydrology, riparian and channel morphology, substrate heterogeneity and habitat features as well as water and sediment quality. In addition, the combined sewer overflows and the ecotoxicological impacts of its components lead to a change of the physical-chemical and microbial mass balance affecting the biocenoses of higher trophic levels. Combined sewer overflows are therefore an additional stress to the ecological status of the urban course of the River Spree and of its channels, which is damaged already by both preload and background load of the aquatic environment. With regard to the assessment of the ecological water status, the European Water Framework Directives gives priority to the aquatic biocenoses in their capacity as ecological quality parameters. Against this background, an immission-oriented approach for the assessment of combined sewer overflows has to describe also their impacts on the biocenoses of the macrozoobenthos, the fish fauna, the macrophytes and the phytoplancton. Initially, the most important factors, mechanisms and processes determining the mass balance of a water course are described. Particular attention is given to the mass balance of eutrophic lowland streams and rivers and of river-lake–systems. In this context, the abiotic mass balance is discussed together with the biotic use of resources. After introducing the basic processes of the mass balance, the impacts of the anthropogenic use on these processes are subsequently described with regard to Berlin’s specific water resources environment. The result is a compilation of the hydraulic, physical-chemical and ecological parameters relevant to Berlin’s water resources serving for water quality assessment purposes. Starting from the ecological processes disturbed by the anthropogenic use, the potential effects of the combined sewer overflow are examined. The parameters selection is concentrated on the essential processes connected to combined sewer overflow issues. Based on the large number of stress factors and their interactive impact system, those influences of the combined sewer discharge are worked out which have to be categorised as particularly jeopardising and which are important target values for the future water quality simulation. Due to the high background load, the highest priority has to be given to the acute load caused by nutrients and carbon load peaks resulting from combined sewer discharges, since they overcharge the self-cleaning potential of the urban course of the River Spree and its channels. Even if the organic substances and the chemical contaminants discharged lead to chronic loads, the main objective is to avoid to the greatest possible extent the temporary but extremely hypoxic conditions, since combined sewer overflows cause fish die-offs when the water resources situation is already critical. Primarily, the water quality modelling has to be concentrated on the realistic mapping of the highly dissolved concentration charts of the target parameters oxygen and ammonia, since the degree of the biocenoses’ damage is rather determined through discharge duration, discharge intensity and frequency than through the medium rates of pollutant loads.

Do you want to download “{filename}” {filesize}?

In order to optimally design and continuously improve our website for you, we use cookies. By continuing to use the website, you agree to the use of cookies. For more information on cookies, please see our privacy policy.