Abstract

The last 60 years has seen unprecedented groundwater extraction and overdraft as well as development ofnew technologies for water treatment that together drive the advance in intentional groundwater replenishment known as managed aquifer recharge (MAR). This paper is the first known attempt to quantify the volume ofMAR at global scale, and to illustrate the advancement of all the major types ofMAR and relate these to research and regulatory advancements. Faced with changing climate and rising intensity ofclimate extremes, MAR is an increasingly important water management strategy, alongside demand management, to maintain, enhance and secure stressed groundwater systems and to protect and improve water quality. During this time, scientific research—on hydraulic design offacilities, tracer studies, managing clogging, recovery efficiency and water quality changes in aquifers—has underpinned practical improvements in MAR and has had broader benefits in hydrogeology. Recharge wells have greatly accelerated recharge, particularly in urban areas and for mine water management. In recent years, research into governance, operating practices, reliability, economics, risk assessment and public acceptance ofMAR has been undertaken. Since the 1960s, implementation of MAR has accelerated at a rate of 5%/year, but is not keeping pace with increasing groundwater extraction. Currently, MAR has reached an estimated 10 km3/year, ~2.4% of groundwater extraction in countries reporting MAR (or ~1.0% of global groundwater extraction). MAR is likely to exceed 10% of global extraction, based on experience where MAR is more advanced, to sustain quantity, reliability and quality ofwater supplies.

Abstract

In recent decades, emerging contaminants (ECs) have surfaced as one of the key environmental problems threatening ecosystems and public health. Most emerging contaminants are present in low concentrations, and therefore often remain undetected and are also referred to as ‘micropollutants’. Despite this, many ECs raise considerable concerns regarding their impacts on human and environmental health. DEMEAU (Demonstration of promising technologies to address emerging contaminants in water and wastewater), a European Seventh Framework Programme (EU-FP7, 2013-2015) project, aimed to tackle ECs in drinking and wastewater by advancing the uptake of knowledge, prototypes, practices and removal technologies. The project followed a solutions-oriented approach using applied research and demonstration sites, and explored four promising technologies for EC removal and/or degradation: Managed Aquifer Recharge (MAR), Hybrid Ceramic Membrane Filtration (HCMF), Automatic Neural Net Control Systems (ANCS) and Advanced Oxidation Techniques (AOT). Furthermore, Bioassays (BA) were investigated as an effect-based monitoring tool. This article shares new findings for each approach and their potential for widespread integration in the drinking- and wastewater sector. Research results from DEMEAU demonstration sites show that opportunities for synergies among these developments offer the most promising and effective methods for tackling ECs in the water sector.

Abstract

Different types of managed aquifer recharge (MAR) schemes are widely distributed and applied on various scales and for various purposes in the European countries, but a systematic categorization and compilation of data has been missing up to now. The European MAR catalogue presented herein contains various key parameters collected from the available literature. The catalogue includes 224 currently active MAR sites found in 23 European countries. Large quantities of drinking water are produced by MAR sites in Hungary, Slovakia, the Netherlands, Germany, Finland, Poland, Switzerland and France. This inventory highlights that, for over a century, MAR has played an important role in the development of European water supply and contributes to drinking-water production substantially. This development has occurred autonomously, with “trial-and-error” within the full range of climatically and hydrogeologically diverse conditions of the European countries. For the future, MAR has the potential to facilitate optimal (re)use and storage of available water resources and to take advantage of the natural purification and low energy requirements during MAR operations. Particularly with respect to the re-use of wastewater treatment-plant effluent and stormwater, which is currently underdeveloped, the use of MAR can support the public acceptance of such water-resource efficient schemes. Particularly for the highly productive and urbanized coastal zones, where the pressure on freshwater supplies increases by growing water demand, salinization and increased agricultural needs for food production (such as along the Mediterranean and North Sea coasts), MAR is expected to be increasingly relied on in Europe.

Abstract

Managed aquifer recharge (MAR) is a widely accepted method for augmenting water supplies for potable and non-potable use. The success of the MAR system is often defined by a substantial removal of chemical and biological contaminants during subsurface passage. To determine removal rates and to differentiate between removal and overall attenuation due to dilution, estimation of mixing proportions is a key element of tracer applications. This report provides an overview of tracers suitable for MAR and discusses advantages and disadvantages for each tracer. The ideal tracer may be defined by: a natural or anthropogenic origin, a clear uneven distribution in the studied system (e.g. sharp contrast between source and native groundwater), non-toxicity (human and environmental), easy and cost-effective measurement, and a conservative (neither sorbed nor (bio-)chemical reactive) or at least predictable chemical or physical behavior. A huge number of tracers exist, each with advantages and disadvantage. Tracers can be dissolved (e.g. chloride, bromide), stable or radioactive isotopes (e.g. 18O, 3H), gaseous (e.g. SF6) or a physical properties (e.g. temperature). The use of heat as a tracer has several advantages over hydrochemical tracers. Temperature is inexpensive, easy and a robust parameter to measure. In contrast to chemical tracers, no laboratory analysis is required and the data is available immediately. Finally, a multi tracer approach (= 2 tracers) is always recommended, because the ideal tracer is rarely found. A reasonable combination is at least one conservative tracer (e.g. stable isotopes of water) with a retarded tracer (e.g. temperature) to evaluate short travel times from the point of recharge (e.g. riverbed or pond) to the recovery well.

Abstract

The Australian Guidelines for Water Recycling – Managed Aquifer Recharge provide a ready-to -use and user-friendly compendium of knowledge. Practical instructions and checklists provide a step wise approach with a strong focus on implementation. The proposed models for water flow and substance transport allow a first tier estimation of present concentrations in ambient groundwater and the impacted zone in the aquifer. The use of stochastic models is not mandatory within the guidelines. A criticism which can be identified related to the use of models simply based on point estimates, is that especially in early stage risk assessments, where uncertainties are usually high, these models tend to pretend a level of certainty which often does not represent reality. Risks associated to inorganic chemicals are required to be treated with more detail. Rigorous quantification of biodegradation kinetics (e.g. first-order rate constants) and adsorption parameters (e.g. linear distribution coefficients) for EOCs during subsurface passage determined on field scale are still scarce. It is clear that first-order rate constants and linear distribution coefficients provide only a simplified description of the removal mechanisms during subsurface passage, because they neglect spatial and temporal dynamics of physical and chemical conditions. Nevertheless, this approach often provides a good approximation and allows also for site independent comparison of removal processes. Regarding the demonstration site in Berlin-Tegel the analysis showed that if the model of the Australian Guidelines is applied to the MAR system the travel time of 50d during subsurface passage cannot be guaranteed. In Germany, a residence time of 50d is usually considered to sufficiently reduce the risk of microbial hazards. Although risk calculations did not reveal immediate concern, it is recommended to develop and apply suitable verification monitoring techniques to quantify travel times and reduce present uncertainties. Moreover, this risk assessment and the study about the influence of the groundwater replenishment site on ambient groundwater (Sprenger and Grützmacher, 2015) clearly showed the need for protective measures against the input of undesired substances from shallow ambient groundwater.

Abstract

The La Vall d’Uixó (Spain) pilot site has been selected by DEMEAU because it is a new Aquifer Storage Transfer and Recovery (ASTR) site consisting of two injection wells surrounded by farmer wells for irrigation in a water scarce area. Potential water source for this MAR site is the effluent of the local WWTP, which is a quite constant water source in terms of availability, but gives concerns in terms of water quality. The investigations carried out within DEMEAU supports the work previously done by the Water Recovery Project (2011 – 2014), coordinated by IGME (Instituto Geológico y Minero de España) and UJI (Universitat Jaume I). The Water Recovery Project consists of different implementation phases and aimed to establish an appropriate MAR scheme with reclaimed wastewater to counteract salinity ingress in the coastal aquifer. In the third phase of the project two injection wells have recharged 310,000 m3 with water from the Belcaire River. To foster the implementation of the fourth and final phase of the Water Recovery Project, DEMEAU focused on the evaluation of the effluent of the local WWTP as source water for the ASTR system. This has been done by three sampling campaigns to analyse bulk chemistry, emerging pollutants and bioassays in native groundwater (six agricultural wells), Belcaire River (the current source water of the MAR scheme) and WWTP effluent (potential future source water). Risk assessment based on Australian MAR guidelines have been applied to evaluate risks related to the usage of WWTP effluent as source water. The Australian guidelines have been applied in two steps: entry level assessment and maximal risk assessment. Entry level assessment concluded that La Vall d’Uixó is suitable for a MAR scheme using reclaimed water, while maximal risk assessment identified hazards associated to reclaimed water as source water. As La Vall d’Uixó is an agricultural area of citrus crops, the use of reclaimed water for the injection in the MAR system must be compatible with the use of recovered water for irrigation. The risk assessment done in this report considered this end use of water, as there are no drinking water wells in the area. High risks have been identified for inorganic chemicals (conductivity, chloride and bicarbonate) and nutrients (nitrate). Risks associated to inorganics can be minimized by mixing effluent and Belcaire River water 1:1. Bulk chemistry coincided mainly with the description carried out in Water Recovery project, identifying two main quality problems in native groundwater: (1) salinity ingress (2) high nitrate concentration due to the intensive agricultural practices in the area. Ion displacement pattern in groundwater samples clearly indicates on-going salinization and documents minor effects of the injected water on few wells only. Cl/Br ratios indicate additional sources of chloride apart from seawater. It seems plausible that the underlying Keuper formations (Triassic) contribute to salinity ingress and SO4 excess in groundwater to some extent. Chlorides and nitrate are regulated by the implementation in Spain of the EU Water Framework Directive for the Castellón aquifer. The threshold value for nitrate is 200 mg/L, while the threshold value for chloride is 650 mg/L. WWTP effluent has nitrate and chlorides below the threshold concentrations (60 mg/L and 140 mg/L respectively) and, therefore, the MAR with reclaimed water would suppose a reduction of groundwater pollution and a step towards a qualitative good status in the aquifer. In total 63 organic micro pollutants have been analysed in groundwater, surface water and WWTP effluent. WWTP effluent shows elevated concentrations in almost all groups of organic micro pollutants compared to river- or groundwater. Only pesticides are found in higher concentrations in groundwater compared to the effluent. The Belcaire River shows the lowest concentrations for all groups of micro pollutants. It was shown that the Vall d’Uixó aquifer is contaminated by various organic micro pollutants and does not reflect a near natural aquifer condition. The aquifer chemistry in terms of organic micro pollutants reflects the usage of (untreated) effluent for direct irrigation over years. Elevated concentration of artificial sweeteners, analgesics, stimulants, caffeine metabolites and cocaine metabolites were found in WWTP samples taken during weekends compared to workday samples. In contrast, iopromide has been quantified in higher concentrations in the effluent of WWTP in work days than in the weekend, as this contrast media is used in hospitals for diagnostic tests normally carried out from Monday to Friday. These patterns of the effluent of WWTP during the week of weekend could be determinant for the selection of the working days as most suitable days to store treated waste water. In order to link analysed chemical concentrations to the observed toxicity in the samples a procedure based on bioassay-specific relative potency (REP) factors was applied. REP factors are determined by the effect concentrations of the reference compound and of the test compound. Despite the lack of toxicological data for a number of the selected target compounds and the lower relevance of the selected compounds for (eco)toxicological risk assessment, this study greatly demonstrate the usefulness of combined analyses of environmental samples. Effect-based methods could complement conventional chemical analysis in water quality monitoring as pre-screening techniques by (1) identifying toxic “hotspots” for further investigation, (2) assessing the effect of the entire mixture of compounds present in waters and therefore and (3) reduce uncertainty in safety evaluation.

Huber, A. , de la Loma Gonzalez, B. , Sprenger, C. , Plattner, J. , Stamm, L. , Hüsch, R. , Hannappel, S. (2015): D12.2 Pre-requisites and design criteria for new MAR systems in compliance with EU WFD and GWD (including pre-treatment).

KWR Water Research Institute, Kompetenzzentrum Wasser Berlin gGmbH, HYDOR Consult GmbH, Fachhochschule Nordwestschweiz

Abstract

This project report summarizes work conducted in work package 12 of the DEMEAU project. Along with Deliverable 12.1 it covers all tasks from work package 12 as formulated in the Description of Work (DoW). This report contains information about (pre-) feasibility studies, design recommendations and pre-treatment options for different types of MAR. The wide range of hydrogeological features encountered in reality makes a site-by-site approach indispensable. As part of this effort the hydrogeological pre-requisites for surface spreading and deep well injection techniques are described in detail. In chapter 2, ten essential hydrogeological parameters are defined by objective criterias. The following chapter outlines and describes how to obtain these essential hydrogeological parameters. This feasibility assessment starts with the screening of the potential site based on a structured procedure. Site investigations start with relatively cheap but numerous field and laboratory testing and continue to more cost-demanding but less numerous tests. With this procedure it is possible to carry out technical site feasibility in a costand time efficient way. The fourth chapter investigates the International Hydrogeological Map of Europe (IHME 1500) as a planning basis for pre-feasibility of new MAR sites. It was found that the IHME 1500 is useful for a pre-assessment, but detailed regional and local scale maps (and investigations) are additionally necessary to effectively assess hydrogeological features. The final chapter deals with pre-treatment options for MAR. Pre-treatment is necessary to remove critical contaminants from the source water to i) enhance system performance and removal efficiencies, ii) ensure the long-term functioning of the system, iii) meet regulatory demands and iv) ensure beneficial uses of the aquifer beyond the attenuation zone. Available pre-treatment methods in relation to source water type and intended end-use are described. Based on chemical concentrations in source water and intended end-use the most appropriate pre-treatment method can be assessed from a table. Altogether this report thus provides guidance in designing new MAR systems based on a sound hydrogeological site characterisation and pre-feasibility assessment based on available information and parameters obtained from structured investigations.

Abstract

Within Work Area 5 of the DEMEAU project, selected innovative technologies and tools for emerging contaminants removal and monitoring are assessed in their environmental and economic benefits and impacts by using life-cycle based tools such as environmental Life Cycle Assessment (LCA) and economic Life Cycle Costing (LCC). Six case studies were assessed to quantify their environmental and economic profiles and formulate unique selling propositions to promote market uptake and implementation. These case studies include managed aquifer recharge for groundwater replenishment or for drinking water production in combination with advanced oxidation process, hybrid ceramic membrane filtration with powdered activated carbon for tertiary wastewater treatment, automatic neural net control systems to optimize membrane operation, ozonation of wastewater treatment plant effluent, and bioassays as screening tool for water quality monitoring. This report summarizes the study layout, input data, and results of LCA and LCC for all case studies and indicates unique selling propositions based on the outcomes of the assessment.

Abstract

This project report summarizes work conducted in work package 11. Along with the deliverable 11.1 and milestone report 11 it covers the tasks from work package 11 as formulated in the Description of Work (DoW). The content of the different sections is interrelated, but each section is organized as an independent part. Title of this report differs from DoW because recommendations for optimum design and operation will be handled in the deliverable 12.2. The sections in this report cover various topics and each section can be found as a stand-alone report in the DEMEAU tool box (http://demeaufp7.eu/toolbox/) for download. Detailed summaries can be found for each section separately.

Do you want to download “{filename}” {filesize}?

In order to optimally design and continuously improve our website for you, we use cookies. By continuing to use the website, you agree to the use of cookies. For more information on cookies, please see our privacy policy.