Abstract

Der Einsatz von Filtern zur Reduzierung von Stickstoff- und Phosphoreinträgen aus der Landwirtschaft in die Oberflächengewässer wurde in Deutschland bisher kaum untersucht. In einem Workshop wurde der Stand der Untersuchungen von Projekten in Polen, Dänemark, Deutschland und Frankreich vorgestellt. Um das Potential dieser Maßnahmen auszuschöpfen, sind die Entwicklung von Entscheidungsunterstützungssystemen für geeignete Einsatzorte und weitere Demonstrationsprojekte unter Feldbedingungen notwendig.

Schwarzmüller, H. , Grützmacher, G. , Orlikowski, D. , Alary, M. , David, B. , Besnard, K. (2012): Evaluation of the ageing potential of drinking water wells to optimize well operation and maintenance..

p 12 In: 39th International Association of Hydrogeologists Congress. Niagara Falls, Canada. 16-21 September 2012

Abstract

Approximately 70% of the drinking water in Germany (BGR) and about 50% worldwide (IGREC 2011) are abstracted from groundwater using filter wells. Their implementation, operation and maintenance are major factors contributing to the costs of drinking water production. According to an international survey (Howsam, Misstear & Jones 1995 ), 40% of worldwide used water abstraction wells work inefficiently in terms of well performance or water quality. This implies high costs and a great potential for improvement, both for the (re-) construction of new wells (capital investment) and well operation (energy consumption, maintenance needs). The main reason for inefficient well performance is so-called well ageing, i.e. the decrease in performance due to biological, chemical and / or physical processes in and around the well. Dominant factors determining type, extension and location of deposits are the geology of the exploited aquifer together with the qualitative properties of the abstracted water, the well design (dimensions and materials), construction (drilling method) and operation. The project WellMa, initiated and financed by the Berliner Wasserbetriebe (BWB) and Veolia Eau, and coordinated at the Berlin Centre of Competence for Water (KWB), aimed at improving the efficiency of drinking water abstraction wells by identifying, evaluating and testing methods of well management including design, operation and maintenance to slow down well ageing. Set into relation to ranges, in which ageing processes are known to occur, the initial data of well sites were used to differentiate a low, medium or high potential for the occurrence of well ageing and to define the monitoring needs accordingly. Well ageing processes were distinguished into six types, each of them implying different pre-requisites and site conditions and leading to different monitoring and/ or maintenance requirements. For carbonate scaling, iron ochre formation, biofouling, corrosion, colmation and sand intake pre-requisites, triggers and threshold conditions were identified and implemented in a decision support system enabling well operators to prioritize the needs for monitoring, diagnosis or maintenance action taking into account the specific well and site characteristics.

Abstract

Managed aquifer recharge (MAR) provides efficient removal for many organic compounds and sum parameters. However, observed in situ removal efficiencies tend to scatter and cannot be predicted easily. In this paper, a method is introduced which allows to identify and eliminate biased samples and to quantify simultaneously the impact of (i) redox conditions (ii) kinetics (iii) residual threshold values below which no removal occurs and (iv) field site specifics. It enables to rule out spurious correlations between these factors and therefore improves the predictive power. The method is applied to an extensive database from three MAR field sites which was compiled in the NASRI project (2002e2005, Berlin, Germany). Removal characteristics for 38 organic parameters are obtained, of which 9 are analysed independently in 2 different laboratories. Out of these parameters, mainly pharmaceutically active compounds (PhAC) but also sum parameters and industrial chemicals, four compounds are shown to be readily removable whereas six are persistent. All partly removable compounds show a redox dependency and most of them reveal either kinetic dependencies or residual threshold values, which are determined. Differing removal efficiencies at different field sites can usually be explained by characteristics (i) to (iii).

Abstract

The present study aimed at developing a universal method for the localization of critical source areas (CSAs) of diffuse nitrate (NO3-) pollution in rural catchments with low data availability. Based on existing methods, land use, soil, slope, riparian buffer strips and distance to surface waters were identified as the most relevant indicator parameters for diffuse agricultural NO3- parameters were averaged in a GIS-overlay to localize areas with low, medium and high risk of NO3- pollution. The five parameters were averaged in a GIS-overlay to localize areas with low, medium and high risk of NO3- pollution. A first application of the GIS approach to the Ic catchment in France, showed that identified CSAs were in good agreement with results from river monitoring and numerical modelling. Additionally, the GIS approach showed low sensitivity to single parameters, which makes it robust to varying data availability. As a result, the tested GIS-approach provides a promising, easy-to-use CSA identification concept, applicable for a wide range of rural catchments.

Périllon, C. , Orlikowski, D. , Sautjeau, B. , Guégain, C. , Randon, G. , Matzinger, A. , Rouault, P. (2011): Implementation of small organically enriched constructed wetlands to mitigate agricultural nitrate hotspots in Brittany, France.

p 15 In: Joint Meeting of Societey of Wetland Scientists, Wetpol and Wetland Biogeochemistry Symposium. Prague. 3-8 July 2011

Abstract

Rural watersheds often face diffuse pollution problems due to agricultural activities. In the Ic watershed in Brittany (France), nitrate concentrations in rivers frequently exceed the EUthreshold of 50 mg-NO3 L-1, despite various actions to reduce the impact from agriculture. As a result, other solutions are considered, such as mitigation systems that can prevent transfer of agricultural pollutants from cropland to the streams. Constructed wetlands have been shown to fit this aim, because they can reach significant N removal for water residence times above ~12 hours, can be implemented decentrally within rural watersheds, while meeting cost and policy requirements. However, constructed wetlands require space, which is particularly scarce and costly in intensively used agricultural watersheds. As a consequence, it was decided to test a more area-effective solution in three pilot systems. On the one hand land-use itself was optimized (i) at site 1 by placing two wetlands with same inflow and dimension on an area of minor agricultural value adjacent to a stream (one surface and one subsurface-flow, both 20 x 10 meters) and (ii) at site 2 by building an elongated infiltration wetland (45 x 2 meters) directly in an existing drainage ditch, thus preventing any use of agricultural surface. In both cases farmers agreed to the placement of the wetlands free of charge. On the other hand it was attempted to raise the areal removal efficiency, with a focus on denitrification, since nitrate is of most concern with inflow concentrations to the sites ranging between 30 and 66 mg-NO3 L-1. This increase in denitrification is attempted (a) by increasing the range of anoxic zones within the wetlands and (b) by adding carbon sources. For (a) one wetland at each site is filled with gravel with bottom outlets to enforce underground passage. Moreover saturation level within the infiltration wetlands and thus hydraulic retention time, can be controlled at drain outlets. For (b) organically rich soil is added to both wetlands at site 1 and carbon sources are mixed with the gravel at site 2. The three wetlands have been constructed in 2010 and are currently monitored for flow and water quality at inlets, as well as at surface and subsurface outlets. The monitoring will allow the calculation of substance mass balances for the entire rain season, expected from December 2010 to May 2011.

Abstract

Bank filtration (BF) and aquifer recharge (AR): aquifer storage recharge (ASR), aquifer storage transport recharge (ASTR); are natural and semi-natural methods for drinking water treatment and constitute a major barrier within water supply system. Recent investigations have shown that about 60 % of Berlin’s drinking water is produced via BF or AR (Zippel & Hannappel 2008). Most drinking water therefore originates from surface waters within the cities limits and is pumped from wells adjacent to it’s many lakes and rivers. Since more than 100 years this system has been supplying safe drinking water so that post-treatment is limited to aeration and subsequent sand filtration. Disinfection is usually not applied (SenStadtUm 2008). The research project NASRI (“Natural and Artificial Systems for Recharge and Infiltration”, KWB 2002 – 2006), funded by the Berliner Wasserbetriebe (BWB) and Veolia (VE) had the aim to characterize the specific hydraulic and hydrochemical conditions at selected BF and AR sites in Berlin and to assess the behaviour of major water constituents, trace organic substances, algal toxins and pathogens during subsurface passage. For this, field investigations at three transsects (Lake Tegel BFsite, Lake Tegel AR-site and Lake Wannsee), laboratory and technical scale experiments were carried out by 7 different working groups. The results of the investigations were documented in 6 extensive research reports and were the basis for nearly 50 scientific publications. In 2007 the IC-NASRI project (Integration & Consolidation of the NASRI outcomes) was initiated by VE and BWB in order to support the practical implementation and optimization of bank filtration and aquifer recharge for drinking water production with the experience gained during the NASRI project. The aim was to derive practical guidelines for design and operation of BF & AR systems by i) further interpretation of the NASRI data and ii) integrating experience from other BF / AR sites world wide. Although subsurface passage is characteristic to many systems of managed aquifer recharge (MAR) the investigations within IC-NASRI concentrated on systems where drinking water is produced by infiltration of surface water either from the banks of a lake / river or from infiltration ponds (or similar systems like ditches or irrigation fields). A transfer of the presented results to other MAR systems, which use different recharge methods (e.g. ASR) or different sources (e.g. treated wastewater) therefore needs to be considered carefully, even though many statements may be true for them as well. This reports aims at providing engineers and scientists involved in drinking water production by BF & AR with up-to-date information on settings of similar systems world wide and on the systems’ performance with regard to drinking water treatment. The aim was to give the reader a condensed overview of the topic whereas further details can be taken from the large number of references given in the bibliography.

Do you want to download “{filename}” {filesize}?

In order to optimally design and continuously improve our website for you, we use cookies. By continuing to use the website, you agree to the use of cookies. For more information on cookies, please see our privacy policy.