Zusammenfassung

The overall goal of the project Cosma-1: “Geological CO2 storage and other emerging subsurface activities” is the assessment of potential impacts of subsurface activities on shallow aquifers used for drinking water production. The first two deliverables (D 1.1 and D 1.2) dealt with general approaches for risk assessment and a description of potential hazards and hazardous events, which might be a risk for shallow freshwater aquifers, as well as lessons learned from existing geothermal energy production and storage sites in Germany. This Technical Report describes the activities of the second phase of the project COSMA-1 and focuses on the compilation of geological and hydrogeological background data (average values) and the development of a simplified conceptual hydrogeological model for a setting typical for the Northern German Sedimentary Basin. The hydrogeological model of the Cenozoic includes Quaternary and Tertiary aquifers down to the layer beneath the Rupelian clay. On this basis, a numerical model with the program Modflow (PMWIN 5.3) was implemented as no complex geometries had to be considered. The structural geological model of the target formation for underground utilisation, the Detfurth Formation (Middle Bunter), incorporates four different fault systems with nine faults in total enclosing the area of interest. Further, a concept for modeling the interaction between deep, consolidated, saline aquifers with unconsolidated freshwater aquifers in a setting typical for the Northern German Sedimentary Basin was developed. This included the model selection, model parameterization, definition of boundary conditions and implementation in hydrogeological flow model software packages. In the further course of the project, a scenario analysis will be performed by using the numerical hydraulic model of the Middle Bunter and the simplified numerical groundwater model of the Cenozoic. The numerical models will be used to assess the key parameters, having an impact on the upconing of deeper saline groundwater beneath the well fields of water works (in shallow aquifer) due to imposed pressure signals.

Bergmann, A. , Dott, W. , Dünnbier, U. , Gnirß, R. , Haist-Gulde, B. , Hamscher, G. , Jekel, M. , Letzel, M. , Licha, T. , Lyko, S. , Miehe, U. , Reemtsma, T. , Sacher, F. , Scheurer, M. , Schmidt, C. (2013): Leitfaden: Polare organische Spurenstoffe als Indikatoren im anthropogen beeinflussten Wasserkreislauf.

Rheinisch-Westfälisches Institut für Wasser, Rheinisch-Westfälische Technische Hochschule Aachen, Universitätsklinikum Aachen, Berliner Wasserbetriebe, DVGW-Technologiezentrum Wasser Karlsruhe, Justus-Liebig-Universität Gießen, Technische Universität Berlin, Bayerisches Landesamt für Umwelt, Georg-August Universität Göttingen, EGLV - Emschergenossenschaft und Lippeverband, Kompetenzzentrum Wasser Berlin gGmbH, Helmholtz-Zentrum für Umweltforschung – UFZ, RheinEnergie AG

Zusammenfassung

Im BMBF-Forschungsverbund „Risikomanagement von neuen Schadstoffen und Krankheitserregern im Wasserkreislauf (RiSKWa)“ wurde die Definition von „Indikatorsubstanzen“ als ein interessantes Querschnittsthema identifiziert. Es wurde dazu eine Arbeitsgruppe gebildet, die sich die Aufgabe stellte, einen Leitfaden zur Zweckbestimmung, Auswahl, Bedeutung und Interpretation von polaren organischen spurenstoffen als chemische Indikatoren zu verfassen. Mit Hilfe der Indikatoren sollten insbesondere anthropogene Veränderungen der Wasserqualität erkennbar sein, sowie natürliche Prozesse und technische Aufbereitungsverfahren überwacht und gesteuert werden können. Diese Indikatoren dienen nicht der Bewertung der Wasserqualität. Mögliche Anwender sind die Bearbeiter in den Verbundvorhaben des RiSKWa-Programms und in weiteren Vorhaben in den Bundesländern, die sich mit Spurenstoffen befassen, Fachbehörden, Forschungseinrichtungen, Wasserlabors der Trinkwasserversorgung und Abwasserreinigung und Ingenieurfirmen, die wassertechnologische Themen der Spurenstoffentfernung bearbeiten. Einen Überblick über mögliche Quellen, Eintragspfade und Barrieren im Wasserbereich zeigt die folgende Abbildung aus dem Bericht eines DECHEMA-Arbeitsausschusses „Pfad- und wirkungsspezifische Indikatorsysteme für Wasser- und Bodensysteme“ (Leitung: W. Dott). Dieser Leitfaden wird dabei sehr wesentliche Teile des dargestellten Systems behandeln.

Boisson, A. , Sprenger, C. , Lakshmanan, E. , Picot-Colbeaux, G. , Ghosh, N. C. , Ahmed, S. , Kumar, S. , Singh, S. , Thirunavukkarasu, M. (2013): Documentation of acquired data and conceptual model of MAR impact input for WP5 modelling.

Bureau de recherches géologiques et minières, Freie Universität Berlin, Kompetenzzentrum Wasser Berlin gGmbH

Zusammenfassung

This report aims at documenting the scientific evidence at 4 managed aquifer recharge (MAR) sites in India after 18 months duration of the EU (European Union) funded project SAPH PANI. The site investigations include compilation of previously existing data, a wide range of field experiments, surface-/groundwater and sediment sampling, data analysis, interpretation and the development of (preliminary) conceptual models. The MAR sites are realised under a wide range of geological and hydrological conditions and the covered aspects can be summarised as:…

Zusammenfassung

Water is one of the sectors where climate change will be most pronounced. While the extents of the impacts are not known yet, it is the right period to prepare the utilities to adapt to the global changes in an urbanising world. Adaptation to climate change, though not always perceived as such, is often already reality in the urban water sector. Several adaptation strategies have been tested to address the key questions: Adapt to what? What to adapt? How to adapt? In this context, within the framework of the EU-project PREPARED, a tentative classification and catalogue of implemented initiatives in the water sector has been compiled. This catalogue is organised into four major categories of initiatives: (1) risk assessment and management, (2) supply-side measures, (3) demand-side measures and (4) global planning tools. The document aims at providing examples on how utilities could go ahead into preparing their water supply and sanitation systems to climate change. Initiatives include various measures ranging from the promotion of active learning to the prevention of sewer flooding and water conservation measures. Within PREPARED, this catalogue is supporting the development of solutions. Being a living document, it is updated regularly along the project when new solutions and initiatives are known. In addition, this work and the subsequent database of adaptation initiatives are accessible to a broader audience thanks to the web-based ‘WaterWiki’ of the International Water Association (IWA).

Zusammenfassung

The study aims at assessing in long-term trials a gravity-driven ultrafiltration pilot plant designed for a capacity of 5 m3/d. The unit was operated in South Africa with Ogunjini surface water and was run with restricted chemical intervention or maintenance (no backflush, no aeration, no crossflow and no chemical). Under South African environmental conditions and with direct filtration of the river water and only one manual drainage of the membrane reactor every weekday, the unit could fulfil the design specification in terms of water production (5 m3/d) as long as the turbidity of the raw water remained in a reasonable level (up to 160 NTU), with a filtration flux typically 4 to 6 L/h.m² (corrected at 20°C). This value was in the same range as the lab results and was consistent with the first phase results (around 5-7 L/h.m² after biosand filtration). However, the flux dropped significantly to a range of 2 to 4 L/h.m² after a rain event resulting in a turbidity peak over several days up to > 600 NTU. This demonstrated that for variable raw water types with expected turbidity peaks above 100 NTU, a pre-treatment would be required for the system (biosand filter or other). The performance of microbiological tests confirmed the integrity of the membrane and the ability of the system to achieve advanced disinfection.

Remy, C. (2012): Agricultural reuse of WWTP effluent and sludge: Results of CoDiGreen.

p 38 In: Advanced Wastewater Treatment and Reuse. TU Berlin. 2012-01-04

Möchten Sie die „{filename}“ {filesize} herunterladen?

Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu. Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung.