Mitigation systems to attenuate diffuse agricultural pollution: location and design choice

In agricultural watersheds affected by diffuse pollution, limitation of fertilizer and pesticide application may not be sufficient to achieve good river water quality. After waterworks had to be closed in Brittany due to elevated nitrate concentrations in the river Ic (> 50 mg-NO3 L-1), the project Aquisafe has been initiated. The objective of Aquisafe is to reduce pollutant loads (nitrate and pesticides) from agricultural fields by implementation of near-natural mitigation zones at diffuse pollution hotspots at the head of watersheds. Simple and small solutions have to be designed in order to more efficiently reduce nitrate and pesticide concentrations in receiving rivers. In addition, a planning tool has to be developed to determine optimal locations to construct these systems. Finally, a tool to assess the effectiveness of these reactive zones on watershed water quality will be implemented. In order to reach the first objective, design features are tested on three scales: 1) laboratory scale, 2) technical scale and 3) field scale. 1) In the laboratory, column experiments were conducted with different organic substrates at short hydraulic residence times (HRT). The efficiency for parallel reduction of nitrate and two common herbicides in Europe, Bentazon and Isoproturon, was explored (Krause Camilo, 2012). 2) In technical scale, two parallel swales were filled with the most suitable material determined in (1) for a one year test. The influence of HRT and temperature was investigated. For nitrate, high reduction could be achieved at short HRT; results for herbicides still have to be confirmed. 3) One infiltration ditch and two simple wetlands were constructed in Brittany (France), taking into account experiences from other scales. These systems are now monitored to investigate the effects of upscaling. Site locations were chosen based on a validated and repeatable GIS-based overlay method that prioritises zones of potential contribution to nitrate pollution (Orlikowski et al, 2011). Additionally, a new wetland module is being developed for the Soil and Water Assessment Tool (SWAT). It allows to predict impacts of wetland constructions on nitrate concentrations in receiving rivers; the module is now implemented but still has to be calibrated with in situ monitoring results. The presentation will focus on results of the up-scaling approach, and will show how the tools of Aquisafe can be used for supporting the development of strategies at catchment scale.

Do you want to download “{filename}” {filesize}?

In order to optimally design and continuously improve our website for you, we use cookies. By continuing to use the website, you agree to the use of cookies. For more information on cookies, please see our privacy policy.