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Executive summary 

Objective of this synthesis report is to summarise the main achievements of the OPTIWELLS-2 
project. Based on a preparatory phase OPTIWELLS-1 (2011-2012), the main project phase 
OPTIWELLS-2 (2012-2015) included the development of two different optimisation modelling 
methodologies (data-driven, process-driven) for minimising a well field’s specific energy demand 
whilst satisfying both, water demand and water quality constraints.  

Chapter 2 gives a short overview on the technical background on pipe hydraulics and the general 
methodology used within the project.  

The general workflow of the testing and application for the three case study well fields 
investigated within OPTIWELLS-2 is summarised in Chapter 3. For the first two case studies 
(Chapter 3.1 and 3.2), a process-driven modelling approach was used, which enabled the 
assessment of three different management strategies (smart well field management, pump 
renewal or a combination of both) on the specific energy demand. This approach was more time 
and data-demanding (Chapter 2.5) compared to the data-driven approach used for the third case 
study (Chapter 3.3).  

The cross-case analysis (Chapter 4) showed, that the energetic prediction accuracy of process-
driven modelling (Chapter 4.1.3) was improved significantly by using pump characteristics 
derived from audits instead of relying on manufacturer data, whilst including steady-state well 
drawdown compared to assuming a static water level in the production well was much less 
important. This can be explained by the fact, that well drawdown contributed to less than 3% of 
the required pump head (Chapter 4.1.1), whilst the offset between audit and manufacturer 
pump characteristics is much more relevant because of pump ageing during long usage periods 
(up to 40 years). The data-based modelling approach used for Site C has yielded energy 
consumption forecasts with a similar accuracy, but is more robust as it relies on operational 
data, thus requiring no calibration.  

Optimisation modelling results (Chapter 4.1.3) obtained for three case study well fields indicate 
that optimised well operation reduces energy consumption up to 20%. The supplementary 
replacement of particularly aged pumps increases the savings even up to 50%, in case that very 
aged pumps were formerly operated at high priority. A newly developed pump database 
comprising the relevant facts of submersible pumps of different manufacturers can be used for 
the selection of suitable pumps (Chapter 6.1.2). 

Testing the methodology developed in OPTIWELLS-2 for minimising the well field’s specific 
energy demand was limited to three small to medium sized well field sites ranging from 6 to 18 
submersible pumps. However, the methodology should be also scalable, i.e. applicable for larger 
well field sites without being too expensive. Currently this is not possible, because important 
parameters required for assessing the in-situ pump characteristics (pumping rate, pressure head 
and power demand of pump, water level in well) are typically not logged by the operators with a 
sufficient temporal resolution. To overcome this data shortage, time-consuming pump audits 
were required, but these provide only a snapshot that in addition can be fast outdated (for 
example if that the pumps are renewed). Thus, future research in the field of energetic well field 
optimisation should focus on:  

- the identification (or equipment) of a bigger well field with data loggers  

- testing of the data-driven approach for this (large) well field 
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Chapter 1  
Introduction 

1.1 Background 

Fresh water aquifers act as a safe drinking water resource for a majority of the European 
population (75 %). Groundwater abstraction is energy demanding, represents thus a significant cost 
factor in drinking water production and is also responsible for (indirect) greenhouse gas emissions. 
For instance, groundwater abstraction was estimated to account for 35 per cent of the energy 
demand of water utilities both in Germany and Switzerland (Plath & Wichmann 2010). Although 
groundwater abstraction represents only about 1% of the European electricity consumption, 
rising energy prices and growing public concern on environmental issues urge water utilities to 
increase the energy-efficiency of water services.  
 
Many factors influence the energy demand of a well field, for example the geometrical elevation 
(i.e. height difference between static groundwater level and pipe inlet to waterworks), well 
drawdown and punctual (e.g. at bends, valves, fittings) and length-dependent pressure losses in 
the raw water pipes. In addition, the pump characteristics (e.g. offset to manufacturer pump and 
global efficiency curves due to ageing or cavitation) as well as the well field operation influence 
the operating point of each single pump and thus its energy-efficiency and specific energy 
demand. OPTIWELLS-1 identified key energy drivers and quantified their contribution to the 
total energy demand for a case study well field (Staub et al. 2012). However, this quantitative 
information cannot be generalized and additional investigations on well fields with different 
hydrogeological settings and design are necessary to derive more general conclusions about the 
relative weight of the different drivers.  
 
Current optimisation strategies include either very general operational guidelines or very site-
specific “trial-and-error” approaches, but lack comprehensive and applicable global assessments. 
Meanwhile, there are several management options for minimising the well field’s specific energy 
demand for water abstraction whilst satisfying predefined boundary conditions (water demand, 
raw water quality) such as: smart well field management (operating the pumps with the lowest 
specific energy demand at highest priority), pump renewal or a combination of both.  
 
The energetic optimisation of a well field is complex, since the different system components 
(aquifer, well, pump, pipe, operation schemes) interact with each other, and the water demand 
may vary, thus leading to a complex hydraulic optimisation problem with varying system operating 
points. The large number of well field operation schemes (e.g. on-off switching of pumps) adds 
to the complexity of an optimising approach, explaining that only very few similar optimisation 
studies have been conducted so far (Hansen et al. 2013; Hansen et al. 2012; Madsen et al. 2009). 
In addition, numerous boundary conditions need to be considered to deliver applicable results 
(water demand, water quality requirements). This complexity requires adequate modelling tools 
for assessing the saving potentials (e.g. energy, costs for abstraction) from smart well field 
operation and/or design (e.g. investments in new pumps).  
Veolia Eau DT developed a tool (OPTIM’Hydro) by coupling the pipe network model EPANET with 
a genetic optimiser (NGSG-II algorithm; (Deb et al. 2002)) for improving the system performance. 
However, this tool, which focuses on water distribution, is currently only able to consider wells 
as infinite reservoirs (i.e. constant water level, no drawdown due to pumping). MADSEN et al. 
(2009) developed the WELLNESS tool, coupling a pipe model (EPANET), a complex numerical 
groundwater model (MIKE-SHE) and a well model (Konikow et al. 2009) with a genetic optimiser 
(SEPA-2 algorithm; (Zitzler et al. 2001)) by using the open modelling interface OpenMI 
(www.openmi.org).  

http://www.openmi.org/
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This approach enabled a detailed, physical representation of the whole abstraction system, but 
is very time-consuming due to the sophisticated numerical groundwater model and thus not 
easily adaptable to other sites. The two approaches described above either completely neglect 
the energy driver well drawdown (OPTIM’Hydro) or consider it using a very complex, distributed 
time-dependent numerical model chain (WELLNESS: MIKE SHE plus well model), thus reducing 
the predictive model performance due to over-simplification (OPTIM’Hydro) or over-
parameterisation (WELLNESS). Consequently, there is a lack of an approach that is able to 
simulate production well drawdown with sufficient accuracy, but is less complex than the 
numerical groundwater model MIKE SHE in the WELLNESS tool. Analytical functions actually exist 
to compute local drawdowns in wells for different hydrogeological boundary conditions and well 
designs (Kresic 2007).These could be integrated in a modelling tool in order to take into account 
drawdown in a more realistic way while avoiding over-parameterisation and too long calculation 
times.  
 
Based on findings of OPTIWELLS-1, smart well field management can yield up to 20% energy savings 
at the well field scale in comparison to classical operation schemes. The investment in newer, more 
efficient pump technologies, pump and well maintenance actions, or the use of Variable-Speed 
Drives (VSD) may enable further savings. Besides, while several operators and pump 
manufacturers pledge for a wider use of variable-speed drives (Boldt 2010; BPMA 2002), the 
conditions where the use of VSDs provides additional savings for a well field system are yet 
unclear as they strongly depend on the ranking of the energy drivers - and thus on site 
characteristics and hydrogeological boundary conditions (Staub et al. 2012). To date, no general 
assessment method exists to assist operators with the decisions of installing VSDs for a given 
purpose. 

1.2 Objectives 

The objectives within the OPTIWELLS-2 project were accordingly: 

- Development of a methodology for modelling and optimising the well field’s specific 
energy demand by means of smart well field management or pump renewal (of same 
type) whilst satisfying pre-defined boundary conditions (water demand, water quality). 

- Pump audits for three small to medium sized case study well fields (6 to 18 pumps) to 
assess current pump characteristics (i.e. pump and global efficiency curves), which can 
show a offset to the manufacturer pump catalogues due to ageing or cavitation 

- Sensitivity analysis to assess how simplifying the structure of the process-driven model, 
for example neglecting well drawdown (static water level in production well) and using 
manufacturer pump characteristics (no pump ageing), impacts its’ capability to 
accurately predict the well field’s specific energy demand. 

- Testing of the developed modelling and optimisation methodology for the three 
audited case study well fields and providing energetic optimisation recommendations to 
the well field operators 
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Chapter 2  

Energetic Well Field Optimisation  

2.1 System boundary and components 

Water abstraction from drinking water well fields typically starts at the production well that is 
equipped with a submersible pump and ends at the pipe inlet to the waterworks. Here, the 
abstracted raw water is treated before being distributed to the end-users (industry, households).  

Within OPTIWELLS-2, the energetic optimisation was limited to the water abstraction process 
(Figure 1), which comprises the following system components:  

 Pipe (network) system 

 Wells 

 (Submersible) Pumps  

 

Figure 1 System boundary and components (Staub et al. 2012) 

The key prerequisite for optimising the energetic performance of water abstraction is the 
concept of the pump’s operating point, i.e. the pumping rate of the pump at a given manometric 
head (discharge- total dynamic head curve), and thus the global efficiency of the system 
(discharge- global efficiency curve).  

The operational point of a pump is defined by two components (Figure 2): 

 the pump head curve, and 

 the system head curve. 

While the pump head curve (as well as the global efficiency curve) is well defined from 
manufacturer’s catalogues for new pumps, the system head curve for an operating pump is 
depending on the following system components: 

1. Geometrical elevation (Hgeometrical): is the height difference between static groundwater 
level and delivery point (e.g. geometric height of the pipe inlet at waterworks, minimum 
pressure in pipe network at a certain point). This height difference needs to be 
overcome in any case, thus it is also called static head. 

2. Well drawdown (Hwell):  is the lifting height difference between dynamic groundwater 
level and static water level from pumping (drawdown). Technical details on how 
pumping rate, pump duration, well construction and aquifer characteristics as well as 
well interference impact the drawdown were provided within deliverable D1.1 (Rustler 
et al. 2013) and D2.1 (Rustler & Sonnenberg 2014b).  

 

DISTRIBUTION WATER ABSTRACTION WATER WORKS 

 

 Area of focus of the project OptiWells 
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3. Pipe losses (Hnetwork): are due to friction or turbulence in the pipe network, which 
increases depending on the flow velocity by the power of two (i.e. doubling the pumping 
rate leads to four times higher pipe losses; see also D.2.1 of the OW-1 project). In detail, 
one can distinguish:  

a. Length-dependent losses (Hnetwork,length): function of pipe length, diameter and its 
roughness 

b. Point losses: dependent on loss coefficients (e.g. valves, bends, fittings)  

Drawdown and pipe losses are summarized in the dynamic head loss component. Dynamic head 
losses due to pipe losses occur in any pipe system, but in case of well fields, an additional head 
loss due to well drawdown (i.e. increasing depth to the groundwater table in case of pumping) 
has to be taken into account. In case of multiple operating pumps in the same pipe, the system 
head curve will further be impacted by increasing pipe losses, which may shift the operational 
point and thus influences the global pump efficiency. 

 

Figure 2 How system components (pipe network losses, well drawdown) impact the operational point. The 
relevance and shape of each head component is site-dependent and thus not to scale. [modified after 
(Strybny & Romberg 2007)] 

The hydraulic behaviour of the abstraction system (pump, well, pipe network) can thus be 
defined by the two variables H and Q and the energy demand can be described as a function of 
these two variables and the global efficiency by the following equation:  

𝐸 = 𝑓 (
𝑄×𝐻

𝜂𝑔𝑙𝑜𝑏𝑎𝑙
)  

where: 

 E  energy consumption (kW), 

 Q  discharge(m³/h),  

 H  total dynamic head (m) and  

 η  global efficiency (dimensionless).  

The closer the operational point from the discharge-head-curve is to the best-efficiency point 
(BEP), which is the maximum of the discharge- global efficiency curve (Figure 2), the more 
efficient is the pump in terms of specific energy cost for abstraction [typically kWh/m³]. 
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The relation between discharge rate (Q) and length-dependent pipe loss (in meters) can be 
described by the Hazen-Williams equation:  

𝐻𝑛𝑒𝑡𝑤𝑜𝑟𝑘,𝑙𝑒𝑛𝑔𝑡ℎ =
𝐿 ∙10.67∙𝑄1.85

𝐶1.85∙𝑑4.87    

with: 

 L   length of pipe (meters) 

 Q  volumetric flow rate, m
3
/s (cubic meters per second) 

 C  pipe roughness coefficient 

 d   inside pipe diameter (meter) 

 
Figure 3 shows exemplarily the pipe loss component (m/km) on a logarithmic y axis for varying 
pipe roughness coefficients and diameters depending on a) the discharge rate and b) the flow 
velocity as calculated during model calibration. This visualisation shows the importance of these 
parameters on predicting the pipe head loss in the abstraction system, thus pointing out that it is 
necessary to know each of these parameters as accurately as possible for increasing the 
predictive model performance. 

 

 

Figure 3: Hazen-solution for different pipe roughness coefficients and diameters under variation of Q (top) and 
variation of flow velocity (bottom); calculated with R 
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2.2 Smart well field management 

Pumps operate in a given hydraulic head-flow range defined by their pump curve, but are not 
equally efficient for all possible operation points. To maximize their efficiency, they should be 
operated as close as possible to their BEP. Operating all possible pumps of a well field in this 
manner is called “smart well field management”.  

Operating a well field in this way is complex, since the different components of the system 
interact with each other, and the water demand may vary, leading to a complex hydraulic 
optimisation problem with varying system-operating points. 

Within the OPTIWELLS-projects, the main energy-drivers within a well field were identified and 
prioritized for the investigated case studies. These were (with decreasing impact) 

(i) static head: geometrical elevation determines up to 75% of a well field’s energy demand 

(ii) pump age: offset between manufacturer’s and current pump characteristics (i.e. pump 
and global efficiency curves)  

(iii) pipe head losses: as detailed in the previous chapter, having several pumps operating 
within the same pipe network is changing the system head curve depending on the 
number and placement of pumps in operation 

(iv) well drawdown: the drawdown component accounted in median between 2 to 12% of 
the well field’s energy demand for the studied well fields, whilst the sum of the other 
energy demand drivers (static head, pipe head losses and pump aging) accounted for 
88% to 98%.  

For the optimization of well field management, as envisaged within OPTIWELLS-2, pump age and 
well operation schemes, i.e. on-off-distribution of wells, were targeted, while the static head 
remains the biggest, but inalterable energy driver.  

2.3 Modelling 

As for the single system components models are available, the objective within the OPTIWELLS-
projects was to develop a coupling scheme to optimize well field management by taking into 
account drawdowns (aquifer & well component), the pipe network and the pump characteristics 
in an energetic well field optimisation tool.  

Two different approaches to implement and couple these system components were considered 
and tested as will be detailed below: 

(i) Process-driven: numerical hydraulical pipe network model (EPANET), which is based on 
physical principles (continuity equation and mass conservation) and coupled with a 
(steady-state) well drawdown model  

As soon as the model is implemented and calibrated, unknown scenarios can be 
calculated and compared to base scenarios to predict system behaviour.  

(ii) Data-driven: prediction and optimisation of well field’s specific energy demand by using 
available datasets (e.g. pumping rate, abstracted volume per pump) from continuous 
monitoring on a high temporal resolution (~ minutes).  

As only past and current conditions are considered, this approach is able to describe 
current system behaviour but cannot be used to predict unknown scenarios.  
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2.3.1 Process-driven 

Objective of process-driven modelling was to represent all system components by numerical or 
analytical models. In the case of OPTIWELLS-2, these were: 

 a drawdown model (WTAQ-2 versus static and steady-state approach), and 

 the pipe network model EPANET. 

As described within deliverable D1.1 (Rustler et al. 2013) WTAQ-2 was able to consider quasi-
transient well drawdowns and account for well interferences. However, calibration 
demand was high and for most parameters sensitivity was in the range of uncertainties. 
Therefore, for the case studies (see also Chapter 3), a well interference matrix was derived 
from monitoring data and implemented into optimization instead of using WTAQ-2 to 
account for time-dependent drawdown development. This energetic well field 
optimisation model (“Optimizer”) was then run with two scenarios: 

(i) static conditions (as in OPTIM’Hydro operated by Veolia DT), and 

(ii) steady-state conditions (data-based regression model as developed within OW-2)  

The programming language R (Ihaka & Gentleman 1996) was used for the optimiser to be 
coupled with EPANET (Rossman 2000) in order to automatically run the pipe-drawdown 
model multiple times. The results were post-processed using R’s data analysis and 
visualisation capabilities. 

Figure 4 shows the components of the finally implemented tool. The process-driven modelling 
approach within OPTIWELLS accordingly comprised the following procedure: 

 model setup under local boundary conditions (EPANET) 

 integration of steady-state well drawdown (based on multiple-step pumping tests) 

 model calibration with pump audit data (best-fit using R) 

 sensitivity analysis to quantify the impact of the different levels of model simplifications on 
the predicted energy demand (multiple calculation runs using R) 

 optimization (multiple calculation runs using R) 

 

Figure 4: Components of process-driven modelling 
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with: 

Model setup: 

 Network geometry (derived from scanned map or EPANET model provided by operator).  

 Pipe head loss coefficients (derived from literature) 

 Boundary conditions: water quantity, water quality constraints (derived from data 
analysis of operator data) 

 Pump characteristics:  (derived from audit)  

 (Steady-state) GW drawdown (derived from data analysis or audit) 

Calibration: 

 Only calibration parameter: pipe diameter  

 Neglecting of other (minor) losses 

The aim of model calibration was to reproduce the hydraulic well field behaviour (i.e. pumping 
rates) as accurate as possible by only changing the pipe diameters until modelled and measured 
pumping rates showed the lowest root mean square error. The model setup used for model 
calibration included not only the pipe network model and audit pump characteristics (i.e. pump 
and global efficiency curves) for all pumps but also a steady-state well drawdown model for all 
wells. 

Using the calibrated model, a sensitivity analysis was carried out for each case study in order to 
assess the impact of different levels of model simplifications (e.g. no well or pump ageing) on the 
accuracy of the predicted specific energy demand. In total, four different model setups were 
tested. Table 1 summarizes the resulting level of impact of the model simplifications. 

Table 1: Sensitivity analysis: impact of model simplification level (high, medium, low) on the modelled specific 
energy demand. * indicates the calibrated reference model used for model comparison 

 
Steady-state well 

drawdown  
Static (no well 

drawdown) 

Audit pump characteristics Low* Medium 

Manufacturer pump characteristics Medium High 
 

Finally, the calibrated model implementing audit pump characteristics and steady-state well 
drawdown (low simplification level) was used for energetic optimisation modelling in case of 
different management strategies. These comprised: 

1) Only smart well field management: former studies showed that this strategy could save 
up to 10-20% of energy compared to the routinely applied operation scheme (Staub et 
al., 2012). Smart well field management is based on identifying the most energy-efficient 
pumping schedules in order to minimize the specific energy demand of the well field 
operation. For this objective, the optimizer simulates all possible pumping configurations 
within the well field and calculates the specific energy of each scenario, defined as the 
energy needed to provide one cubic metre of raw water (depending on number of 
pumps n with on/off operation, i.e. 2n possible combinations minus 1 considering that at 
least one pump is on). 

2) Only pump renewal: if the pumping schedule cannot be modified due to additional 
constraints (water quality, water demand, maintenance, etc.), a “smart pump renewal” 
can be a good option to reduce the energy demand. Within this study, pump renewal is 
defined as followed: the currently installed pump is replaced by a new pump of the same 
model (i.e. the current pump characteristics obtained from the audit are replaced by the 
manufacturer pump characteristics). For identifying the most suitable pump(s) to 
change, the optimizer simulates all possible pump renewals (combinations as above) and 
calculates the specific energy of each one.  
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3) Combination of smart well field management (1) and pump renewal (2) 

 

The boundary conditions for optimising the specific energy demand were always to satisfy an 
average hourly water demand whilst also taking into account possible water quality constraints. 
Both boundary conditions were derived for each case study by performing a data analysis with 
the software R.  

2.3.2 Data-driven  

Objective of data-driven modelling was to evaluate the feasibility of optimizing well field 
management by taking into account operational data on drawdown development within the well 
field without model components. Thus, all system components needed to be represented by 
data sets. The exact approach had to be developed based on the extent and temporal resolution 
of available data.  

First step was a sensitivity analysis with regard to the impact of transient conditions in 
drawdown modelling on the energy demand prediction error. As for the worst-case (high 
drawdown component) an error of 4.9% was calculated, which is in the range of measurement 
uncertainties, considering transient conditions in the case study approach was abandoned and 
instead, data-driven modelling should help to identify  

(i) the most efficient and most inefficient pumps of a well field, and 

(ii) the optimum combination of pumps with regards to total energy demand. 

Representing all system components by data was implemented by considering  

 the pump system curve from manufacturer and audit data,  

 the energy demand per pump from audit and operator data, and 

 the current pumping scheme (incl. energy demand of well field) from operator data. 

In order to answer the questions above, the following stepwise approach was developed and 
tested within the third case study as further described in Chapter 3 of this report.  

i) Determination of offset between manufacturer and audit data: Identification of 
inefficient pumps, i.e. operating outside their best-efficiency point (aged or wrongly 
dimensioned) 

ii) Calculation of specific energy demand-curves (Espec-Q) by extrapolating from 
manufacturer data and offset from audit pump curves 

iii) Calculation of total energy demand for the well field by summing up discharges, 
operating hours and energy demand per pump with satisfaction of the water demand as 
stop criterion 

iv) Prediction of base scenario (current pumping scheme) and plausibility check 

v) Optimisation by means of “smart well field management”: development of more 
energy-efficient pumping scheme 

All visualization and data aggregation and modelling tasks were again performed with R (Ihaka & 
Gentleman 1996). 
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2.4 Pump audits 

The pump characteristics of new pumps are available from manufacturer pump catalogues quite 
accurately with well-known uncertainty levels depending on the pump’s tolerance class 
according to ISO 9906 (1999). However, due to aging effects (iron-ochre formation in the 
impellers) or cavitation (pump operation in overload, outside optimal range) the derived values 
do not need to be true especially for older, highly used pumps. Both can lead to an offset from 
the manufacturer characteristics, which in turn may lead to an increased specific energy 
demand. Thus, prior to assessing the energy demand of the well field pump audits are 
recommended to derive the current pump characteristics.  

Within OW-2, the following parameters were measured within the pump audits that were 
carried out for all three case studies (Figure 5): 

- Power demand (E): power demand of the pump (measurement device FLUKE 1730; 
assumed measurement error: 2%) 

- Pumping rate (Q): clamped-on ultrasound device (FLEXIM F601, assumed measurement 
error: 5%)  

- Total pressure head (TDH): sum of the  

 Pressure head in the pipe (P, measurement device: VEGABAR 51) and the 

 Distance to the groundwater table (H, measurement device: STS DL70) below 
that point 

The error of the total pressure head is assumed to be 1%. Furthermore, this approach neglects 
possible head losses in the rising pipe, because the pressure head of the pump was not 
measured directly at the pump but behind the rising pipe. 

During the pump audit, only the audited pump was operated, i.e. all other pumps of the well 
field were turned off. In addition, the pump characteristics were assessed for at least five 
different steps (i.e. pumping rates) that were kept constant for approximately five minutes by 
opening (or closing) a preinstalled throttling valve. In case no throttling valve was installed (a 
few pumps of the third case study), only one pumping rate could be measured. The duration of 
the pump audit for each pump (including installation of measurement equipment) took between 
60 to 90 minutes. 

The logger data were then imported into R for data analysis (Figure 6) and aggregated for each 
pumping step by using the median values during a time period of quasi-constant pumping rates. 
This enabled the calculation of audit pump characteristics, i.e. audit pump and global efficiency 
curves, which were then compared against the manufacturer curves (Figure 7). 
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Figure 5 Pump audit and measurement devices for determining pump characteristics (pictures: TUB, KWB) 

 

 

 

Figure 6  Assessed parameters during pump audit for determining “real” pump characteristics  
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Figure 7 Comparison of manufacturer pump characteristics (blue lines with dots) and “real” pump characteristics 
based on audit data 
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2.5 Data prerequisites & uncertainties 

The different modelling approaches, process-driven (Chapter 2.3.1) and data-driven 
(Chapter 2.3.2) have different data prerequisites, which are summarised in Table 2.  

 

Table 2 Data requirements for the different modelling approaches 

 
Modelling approach  

Data requirements Process-driven Data-driven 

Pipe network yes no 

Well drawdown curves for each well yes no 

Pump characteristics 
Pump curves (Q, TDH) 
Global efficiency curves per pump (Q, TDH, E) 
Specific energy demand curves per pump (Q, E) 

 
yes 
yes 
no 

 
no 
no 
yes 

Operational data 
Abstracted volume per pump (V) 
Pumping rate per pump (Q) 
Power demand per pump ( E )  
Total dynamic head per pump (TDH) 
Specific energy demand of well field (E/Q) 

 
yes 
yes 
yes 
yes  
yes 

 
yes 
yes 
yes 
no 
yes 

 

Accordingly, only for process-driven modelling detailed maps of the abstraction pipe network 
are required, which should include information on pipe diameters, installed features (valves, 
fittings, bends), and geometrical elevations of system boundaries (e.g. static groundwater level 
in wells, geometrical elevation of pipe inlet at waterworks), so that a digital model of the well 
field abstraction system can be constructed.  

In addition, discharge-dependent (steady-state) well drawdown curves need to be included in 
case that well drawdown contributes to a significant share of the pump’s total dynamic head at 
its operating point, which is true for field sites with low static head but large well drawdowns. 
For integrating discharge-dependent well drawdown data, recently carried out multiple step 
pumping tests can be used. 

Pump and global efficiency characteristics for each pump are required input parameters in case 
of the process-driven model, which was used for the first two case studies (Chapters 3.1 and 
3.2), while in case of the data-driven modelling approach, as used for the third case study 
(Chapter 3.3), specific energy demand curves (based on power demand and pumping rate) for 
each pump are the only required inputs. For acquiring these data, there are generally two 
options:  

1) Pump audits: in case that no real-time monitoring of the required parameters for 
assessing the pump performance is available (see 2.4) and pump ageing or cavitation 
cannot be ruled out, pump audits are recommended. The uncertainty of the measured 
parameters depends on the measurement equipment and systematic errors (e.g. in case 
of improper installation of the monitoring equipment) 
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2) Manufacturer pump characteristics: if neither pump audits nor real-time monitoring are 
available but the pump is quite new, the pump characteristics can be deduced from 
manufacturer pump catalogues. The uncertainty of the pump characteristics derived 
from pump catalogues depends on the pump tolerance class (Table 3) and on the degree 
of conformity between the installed pump and the manufacturer pump curve. 

 

Table 3 Uncertainty of pump characteristics based on manufacturer catalogues (ISO 9906 1999) 

Norm Pumping 
rate (%) 

Total dynamic 
head (%) 

Pump 
efficiency (%) 

Power 
demand (%) 

Class 1 4.5 3 3 
 

Class 2 8 5 5 
 

Appendix A 9 7 7 9 

 

Finally, operational data are required for both modelling approaches, but for different purposes:  

- Process-driven: in case no pump audit is carried out, operational data are required for 
assessing the current pump characteristics (pumping rate, total dynamic head, power 
demand). In addition, operational data (pumping rates per pump) are required for 
hydraulically calibrating the model (e.g. by changing either the pipe diameter or 
roughness, see also Figure 3).  

- Data-driven: this approach requires no model calibration, but operational data 
(pumping rate and abstracted volume per pump) are required as model input 
parameters. In addition, in case no pump audit is carried out, operational data are 
required for assessing the specific pump characteristics. 

For both modelling approaches, operational data on the specific energy demand of the well field 
should be available at least on a monthly basis, so that the predictive model performance can be 
compared with measured data. 

In general, as can be seen from Table 2, process-driven modelling has not only higher data 
requirements compared to data driven modelling, but also its application requires more 
technical steps (e.g. model parameterisation, calibration, validation). However, the more 
technical steps are needed the higher is the predictive uncertainty of the model (e.g. due to 
overfitting during calibration). Thus, the predictive uncertainty in case of data-driven modelling 
is much lower, but at the expense that it is not possible to assess the system behaviour for 
different boundary conditions (e.g. assessing the impact of pump replacement on the well field’s 
future energy demand). 
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Chapter 3  

Case studies 

Within Optiwells-2, three cases studies were assessed concerning their energy demand 
optimization potential. In order to do so, detailed data analyses, pump audits, modelling and 
optimisation of the specific energy demand were performed. Details are given in the following 
chapters. Reports or presentations are available individually for each case study, thus only brief 
descriptions are given here. 

3.1 Site A 

3.1.1 Site characteristics 

The first case study was a small well field in north-eastern Germany (Figure 8) with a total of 8 
production wells, of which six wells were operated with a total average hourly pumping rate of 
74 m³/h (data: January - May 2013). Raw water is transported in a main pipe (DN 400) 
approximately 3.5 km to the pipe inlet of the waterworks, which was set as system boundary for 
this study. Water treatment consisting of aeration and filtration within the waterworks as well as 
distribution of the purified drinking water were not taken into account within this study. Static 
lifting height, i.e. from the static groundwater table to the pipe inlet at the water works, adds up 
to 30 meters. The age of the six operable pumps varied between one to six years (median: 4.5 
years). The pumping rate of the pumps was comparably low with a median of 35 m³/h 
(minimum: 14 m³/h; maximum: 66 m³/h), which can be explained by the low specific capacity of 
the wells having well drawdowns up to 10 meters at the given discharge rates. 

 

Figure 8 Case study well field  

 

As between 2004 and 2013 the energy price has tripled, considerable efforts were dedicated to 
optimising the specific energy demand of the well field by the operator already in the past, 
which decreased by approximately 20% in the same time period (Figure 9). 
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Figure 9 Energy price and specific energy demand of the well field 

 

3.1.2 Pump audit 

The pump audit was performed within four days (8th - 11th of April 2013) by KWB and TU Berlin 
together with the local well field operator in order to assess the current pump and global 
efficiency curves of the six operable pumps in the production wells W1, W2, W4, W6, W7, W8 of 
the studied well field. The pumps p3 and p5 (in W3 and W5, respectively) were not audited 
because these wells were not operated due to their low specific capacity.  

During the pump audit, only one pump was operated at a time while all other pumps were 
turned off. For each well, the pumping rate was increased every five minutes by successively 
opening the initially fully closed valve in at least five steps with quasi-constant discharge until it 
was fully open. 

The audit results are summarized in Figure 10 and Figure 11. Comparing audit and manufacturer 
data shows that for both, total dynamic head and global efficiency there is a large offset for 
pump p6 and a minor offset for pump p2 whilst all other are pumps very close to the 
manufacturer curves (Figure 10). Interestingly the picture is different for the specific energy 
demand of the pumps (Figure 11), because even pump p6 fits nearly perfectly with the 
manufacturer data. This can be explained by the fact that for this pump obviously both, total 
dynamic head and global efficiency dropped by the same order of magnitude, thus having nearly 
no impact of the specific energy demand.  
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Figure 10  Comparison of audit (red lines with dots) and manufacturer (blue lines with dots) pump characteristics for 
both, total dynamic head (top panel) and global efficiency (bottom panel). Each dot represents one 
pumping step. 
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However, despite the fact that the specific energy demand curves (Figure 11) are very similar for 
all pumps, the pump with the highest specific energy demand is pump p6 (0.5 kwh/m³ at 
maximum audit pumping rate). At the maximum audit pumping rate it is 250 % higher compared 
to the specific energy demand of the other pumps. Thus, it is recommended to check whether 
the pump is connected electrically correct (i.e. that the phases are not shifted so that the 
impeller is turning in the wrong direction) and potentially to renew the pump p6. 

 

Figure 11 Impact of changed pump characteristics: audit (red) versus manufacturer data (blue)) on the specific 
energy demand  

 

3.1.3 Process-driven modelling 

The raw water pipe network was digitalised as EPANET input file based on maps provided by the 
well field operator. For using the model in process-driven optimization, the following model 
features needed to be included additionally: 

- Pump characteristics: pump and global efficiency curves (derived from the pump audit 
as described in Chapter 3.1.2) 

- Well drawdown: steady-state drawdown for different pumping rates (based on the 

audit data) 

- Boundary conditions: average water demand and water quality (derived from the 
analysis of operational data) 
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3.1.4 Results 

Model calibration & validation 

The process-driven EPANET model, which included steady-state well drawdown and audit pump 
characteristics (i.e. pump and global efficiency curves) was hydraulically calibrated by fitting only 
the unknown pipe diameter for the main pipe between the well field and the waterworks 
(3.6km) for all wells pumping in parallel. With this approach, the real pipe diameter is potentially 
underestimated because no minor pipe losses are assumed.  

The objective function to be minimised was defined as average error between measured and 
modelled pressure and discharge in the pipe, in case that all six pumps in the wells of the well 
field were operating in parallel. For the best calibration run, the pipe diameter was adjusted to 
371 mm, which resulted in an error of less than 0.3 % for both parameters (Table 4).  

In a next step, model validation was performed by checking the model results for single well 
operation to the data measured during the audit. The average error for both, discharge and 
pressure increased up to 6% (Table 4). However, given the measurement uncertainties for 
discharge (clamped-on ultrasound device, assumed error: > 5 %) and pressure measurement 
(assumption: 1%), such a value is acceptable and the model was thus assumed to be well 
calibrated. 

Table 4 Results of model calibration & validation   

 

Sensitivity analysis 

In a second step, the calibrated model was used to test the impact of the model structure (i.e. 
including audit pump curves and measured well drawdowns instead of neglecting well 
drawdown and using manufacturer pump curves) and uncertainty (i.e. missing operation data) 
on the predicted specific energy demand of the well field. Figure 12 shows the resulting 
deviation between predicted (model) and measured (operator, reference value) energy demand 
with regard to: 

(i) Model structure (difference between the four different box-whisker plots): the most 
simplified model structure, assuming static groundwater levels (GW) during well 
pumping and manufacturer pump characteristics (right box in Figure 12) underestimates 
the operator’s measured specific energy demand by 28% in median. However, the most 
realistic model-structure, taking into account audit pump curves and steady-state well 
drawdown, underestimates operator’s measured specific energy demand by 13% in 
median (left box in Figure 12). In case only one feature is considered in the model 
structure, the median underestimation of the specific energy demand varies between 
22% (in case of neglecting well drawdown, second box from left in Figure 12) and 19% 
(in case of assuming manufacturer pump curves, third box from left in Figure 12). 
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(ii) Uncertainty (range of each box-whisker plot): due to the unknown temporal 
distribution of the pump configuration schemes (e.g. how much of the time all wells are 
pumping in parallel), the box-whisker plots indicate the specific energy demand for all 
different 63 well field operation schemes (i.e. 26-1= 63 pumps on/off combinations for 
the six pumps). This uncertainty could only be ruled out, if data on the real temporal 
distributions of the used pump configuration schemes would be available. 

 

Figure 12 Sensitivity analysis: model structure (different boxes) and uncertainty concerning the real operation 
schemes (range of box-whisker plots) on predicted specific energy demand  

 

Energy optimisation 

For the first case study, the optimisation objective was to minimise the specific energy demand 
of raw water abstraction under the following two constraints:  

- Satisfying an average hourly water demand (here: 75 m³/h, dashed grey line: Figure 13) 

- Maintaining a predefined minimum raw water quality only by means of dilution either 
by mixing water of different wells within the studied well field or by diluting the raw 
water of the studied well field with raw water from a second well field with better water 
quality. 

The impact of the three investigated management alternatives (chapter 2.2) for minimising the 
specific energy demand of the well field under the constraints defined above is shown in Figure 
13. By applying smart well field management alone or in combination with the renewal of two 
pumps (p2 and p6), the specific energy demand could only be reduced by 3 % to 12 % for the 
best-case pump configurations compared to the current operation scheme (Table 5). While 
investing in new pumps had no impact in terms of energy savings for the best-case pump 
configuration scheme compared to smart well field management only (top panel in Figure 13), it 
significantly minimised the specific energy demand variability of the 63 different pump 
configuration schemes (middle panel in Figure 13), thus reducing the risk of using highly energy 
demanding pumping configurations.  
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Figure 13 Optimisation modelling results for three different management strategies. Pump configurations used by 
the operator are marked from dark blue (base load) to red (peak load configuration).  

 

The third management alternative combined smart well field management with swapping the 
currently installed pumps in well 1 and 8, but did not consider investing in pump renewal 
(bottom panel in Figure 13). In this case the specific energy demand could be reduced by 11.1 % 
compared to the current best-case operation scheme. This is similar to the second strategy 
(smart well field management plus pump renewal) but still satisfying the predefined raw water 
quality without mixing with better quality water of the second well field.  

However, despite the fact that this third alternative would yield a good solution in terms of 
satisfying water quality and water demand whilst minimising the specific energy demand its 
implementation would not be an easy one. This is due to the additional legal constraint of a 
“maximum allowed pumping rate per well” defined by the water authority (not taken into 
account for this scenario) which further limits the solution space. In a nutshell, the energetic 
optimisation potential for this case study site was very low. This can be attributed to the fact 
that the current operation scheme chosen by the operator is nearly as energy-efficient as the 
best-case operation schemes for the three management alternatives assessed within 
optimisation modelling. Table 5 summarizes the results in terms of energy costs per year. 
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Table 5 Best-case optimisation results for the case study Site A. Operation schemes in bold do only satisfy the 
minimum water quality in the raw water when the abstracted water is diluted with raw water from the 
second well field (not taken into account in the energetic study) with significantly better water quality.  

 

3.1.5 Conclusions 

For the given case study setup, the initial data analysis showed that the specific energy demand 
of the well field already decreased within the last ten years by 20%. It is very likely that 
investment in new pumps had contributed to this reduction as the median age of the 
submersible pumps lied at 4.5 years only (ranging from 3 to 7 years). This hypothesis was further 
confirmed by the pump audit, which showed that significant offsets between manufacturer and 
audit pump characteristics were limited to two (p2, p6) out of six pumps, which are current 
candidates for pump renewal.  

The energetic optimisation modelling further demonstrated that combining smart well field 
management with: 

- Switching pumps in well 1 and 8: would be a pragmatic solution for minimising the 
specific energy demand by nearly 12 % compared to the current operation scheme for 
the best-case operating scheme whilst still satisfying the predefined raw water quality 
without mixing. However, implementation was rated to be unlikely because the 
maximum pumping rate per well is restricted by the water authority, a criterion that is 
not satisfied by this solution 

- Investing in new pumps (p2 and p6): would improve the operational flexibility while not 
significantly decreasing the specific energy demand compared to the best-case 
operation scheme. Replacing these two pumps reduced the variability in total energy 
demand of the well field for all possible pump configuration schemes, which however 
varied by less than 15% (0.21 +- 0.03 kwh/m³). 

In a nutshell, the pump with the lowest specific energy demand (p7) is currently installed in the 
well with the lowest water quality, thus limiting the solution space for reducing the specific 
energy demand. This case study thus served as an example how the consideration of multiple 
constraints (water demand, water quality and water authority regulations) led to solutions which 
are energetically sub-optimal but satisfying the given restrictions. 

 
Operation scheme Annual energy costs (k€/a) 

Jan.- May 2013 Unknown (0.261 kWh/m³) 30.7 

Current operation (since 
11/2013)    

W 2 | 8 (0.217 kWh/m³);  

W 1 | 2 | 8 (0.217 kWh/m³)   

25.7 (- 16.6 %) 

25.7 (- 16.6 %) 

Smart well field management 
(+ pump renewal of p2 and p6 
with same type in W2 and W6)  

W 4 | 8 (0.209 kWh/m³) ; 

 W 1 | 4 | 8 (0.213 kWh/m³) 

W 7 (0.178 kWh/m³); 

W 7 | 8 (0.188 kWh/m³) 

24.7 (- 19.9 %) 

24.7 (- 18.4 %) 

21.5 (- 31.8 %) 

24.7 (- 28.7 %) 

Smart well field management 
& pump change (W 1 <-> W 8) 

 W 8 (0.186 kWh/m³); 

 W 8 | 1 (0.196 kWh/m³)  

22.2 (- 27.7 %) 

22.2 (- 27.7 %) 
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3.2 Site B  

3.2.1 Site characteristics 

The second case study focused on a well field in eastern France consisting of five production 
wells with six operable submersible pumps (W3 w equipped with two pumps, WK is equipped 
with three pumps, but only pK_2 is operated). The average hourly production rate of the well 
field is 400 m³/h (data: year 2013). Wells W1, W2 and W3 are located in the same area and 
distant of about 500 m from each other, WA and WK are located in distinct and more remote 
areas (Figure 14). The static head is about 80 meters for the pumps in wells W1, W2, W3 and WA 
and 40 meters for the pumps in well WK. However, the latter has operational constraints due to 
water quality issues and can thus not be operated at all times. Since only chlorination is required 
as water treatment, four wells (W1-3 & WA) are directly connected to the distribution network, 
while abstracted raw water of WK is conveyed into a tank. In case that the production rate of the 
four wells W1-3 & WA is higher than the water demand, water is delivered to the tank, too.  

 

Figure 14 Simplified map of the case study well field. The pumps pK_1 and pK_3 in well WK were not used by the 
operator at the time of investigation and were thus not audited in September 2013  

 

3.2.2 Pump audit 

The pump audit was performed in four days (9th – 12th September 2013) by KWB and TU Berlin 
together with the local well field operator in order to assess the current pump and global 
efficiency curves of the six operable pumps in the five production wells (W1, W2, W3, WA, WK) 
of the well fields. The pumps pK_1 and pK_3 in well WK were not audited because these pumps 
were out of operation during the audit in September 2013. During the pump audit, only one 
pump was operated at a time while all other pumps were turned off. The pumping rate was 
increased every five minutes by successively re-opening the initially fully closed valve in at least 
five steps with quasi-constant discharge until the valve was fully open.  

The audit results in comparison to the additionally evaluated manufacturer pump data are 
shown in Figure 15 and Figure 16. Both, total dynamic head (top panel, Figure 15) and global 
efficiency (bottom panel, Figure 15) indicate that in general the oldest pumps (pA, pK_2, p3_1) 
showed the largest offsets between current and initial values. The younger pumps (p1, p3_2) 
had a reduced global efficiency, whilst the most recently installed pump p2 showed no 
significant offset. 
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Figure 15 Comparison of audit (red lines with dots) and manufacturer (blue lines with dots) pump characteristics for 
both, total dynamic head (top panel) and global efficiency (bottom panel) 
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In order to determine how these changed pump characteristics impact the specific energy 
demand of each pump, the specific energy demand curves are shown in Figure 16. Again, the 
two oldest pumps (pA and pK_2) showed the largest offset to the manufacturer data, while all 
other pumps did not significantly differ from the manufacturer curves. However, in terms of 
specific energy demand, the 24 years old pump pK_2 is still comparable to three much younger 
pumps (p1, p3_1, p3_2). This was attributed to the fact that the well WK is located on a higher 
geometrical elevation, requiring only half of the total head of the other pumps (see chapter 3.2.1 
and top panel, Figure 15).  

 

Figure 16  Impact of changed pump characteristics (e.g. due to ageing, cavitation) on the specific energy demand  

 

3.2.3 Process-driven modelling 

The pipe network (including reservoirs) was provided digitally as EPANET input file by the well 
field operator. However, for using the model the following model features needed to be 
included: 

- Pump characteristics: derived from pump audit (Chapter 3.2.2) 

- Well drawdown: steady-state drawdown based on audit data  

- Boundary conditions: water demand pattern and water quality (both derived from data 
analysis) 

Subsequently, the process-driven model was hydraulically calibrated by changing the pipe 
diameter so that the root mean square error between modelled and measured pumping rate 
was minimised for a two weeks period. The workflow was described in detail within deliverable 
D2.1 (Rustler & Sonnenberg 2014a). As stated there, calibration ended with an average error 
between modelled and measured pumping rates of 0.2 m³/h, thus the model was considered to 
be well calibrated. 
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3.2.1 Results 

Sensitivity analysis 

The calibrated process-driven EPANET model using audit pump characteristics and steady-state 
well drawdown (left boxplot Figure 17), underestimated the measured specific energy demand 
by only 1 % (for the well field operation of October 2013). Compared against more simplified 
model structures either neglecting the well drawdown or pump ageing (i.e. offset to the 
manufacturer data) or both, the accuracy of the calibrated model used for optimization 
modelling was still satisfying (error of less than one percent) despite the fact that neither 
transient well drawdown nor well interference were considered. Obtaining this low error can be 
explained by the following findings: 

- the case study well field is not impacted by well interferences and  

- a steady-state drawdown model is sufficient since at least 70% of the drawdown is 
reached after five minutes of pumping for every well and the drawdown is small (less 
than two percent) compared to the static head. 

Figure 17 summarizes the deviation between predicted and measured specific energy demands 
comparing static and steady-state approach and using audit versus manufacturer data. As the 
temporal pattern of the pumping scheme was given from operational data, one value was 
calculated for each model setup and the range of uncertainty of sensitivity analysis, as discussed 
for the first case study, could be ruled out by applying real data. From the four models (Figure 
17), pump ageing (i.e. audit curves instead of assuming manufacturer curves) was identified as 
the most influencing factors for this case study. In case only manufacturer pump data were used 
for modelling, the relative error of the predicted specific energy demand was 40 %. The impact 
of considering well drawdown on the specific energy demand was negligible for the energetic 
well field modelling as it increased the accuracy by only 0.8 % compared to a static groundwater 
level in the wells. The high median age of the pumps of 17.5 years further underlined the 
plausibility. Finally, using the most realistic model (audit curves and steady-state drawdown), 
improved the prediction accuracy by approximately 43 % compared to the most simplified 
model (manufacturer curves and static groundwater level). This model was therefore used for 
energy demand optimisation modelling, which is described in the following chapter. 

 

Figure 17 Sensitivity analysis: impact of model structure on predicted specific energy demand  
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Optimization 

Management Option 1: Only smart well field management 

The 63 possible pumping configurations were compared with regard to their respective specific 
energy demand and flow rates (Figure 18). From Figure 18, the operator can not only evaluate 
the energy demand of the currently implemented well field operation schemes but is also able 
to identify alternative configurations that are more energy-efficient and fit better to his 
constraints (e.g. operational restrictions, water quality). For example, considering that the 
average hourly water demand is 400 m³/h, the pump configuration scheme p2 | pK, as 
highlighted in Figure 18, would induce an improvement of 17.5% of the specific energy demand 
compared to the current pumping schedule indicated by the dashed line.  

However, quality constraints do not allow this pumping schedule. Thus, a combination of two 
pumping schemes is required (p2 and p1 | p2 | pK, Figure 18), which limits the maximum energy 
savings to 16 %.  

 

Figure 18 Specific energy demand and production rate for all 63 different well field operation schemes (Philippon et 
al. 2014)  

 

Management Option 2: Only pump renewal 

From the simulation of every pump renewal combination, the optimizer found the best pumps 
to be renewed that maximize the energy saving potential are in decreasing order pK, pA, p31, 
p32, p1. The renewal of pump p2 does not bring any energy saving because this pump was 
changed just before carrying out the study within OPTIWELLS-2. The pump renewal option can 
bring almost 10% of energy saving for one pump renewal and reaches at maximum 25% of 
energy saving, if the five pumps cited before are all renewed (black columns in Figure 19). 
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Management Option 3: Combination of smart well field management and pump renewal 

For every potential pump replacement, the optimizer also applied the smart well field 
management approach. Depending on the approach (only pump renewal or combined strategy), 
the best pumps to replace were different. For example, the second best pump to be replaced 
after pK is pA, if the pumping schedule cannot be changed, whereas it is p1, if smart well field 
management can be applied. After pK and p1 being replaced, the combined approach already 
reaches the maximum saving potential (49.7% without quality constraints and 47.6% with) 
because in the best pumping schedule only the pumps p1, p2 and pK were used. Any further 
pump renewal did thus not increase the energy saving. Figure 19 summarizes the results. 

 

Figure 19 Impact of different optimization strategies on energy saving potential for case study well field (compared 
to specific energy demand for January 2014), *SWFM: Smart Well Field Management (Philippon et al. 
2014)  

 

3.2.2 Conclusions 

For the second case study, the process-driven model approach showed an energy saving 
potential of up to 40% for the well field by taking into account steady-state well drawdown, 
pump and pipe ageing. Optimisation modelling showed that combining smart well field 
management with the “smart” renewal of two pumps, the well field`s specific energy demand 
could be reduced by nearly 50% compared to the well field operation scheme which was in place 
in January 2014. However, this energy saving is a maximum potential as it bases on the 
assumption that the identified most energy-efficient pump configuration scheme satisfying 
water demand and quality constraints would be used throughout the whole year, what in 
practice is typically not feasible.  
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3.3 Site C 

3.3.1 Site characteristics 

The third case study is the largest well field site that has been investigated within OPTIWELLS-2 
and is located in France. It consists of 14 different production wells and is equipped with in total 
19 submersible pumps (out of them two wells with two and three pumps each, Figure 20). The 
average hourly pumping rate is 480 m³/h (data: year 2013). Raw water is transported in DN 300 
to DN 600 pipes for maximum 1 km to the waterworks. Treatment comprises aeration and 
filtration, but is not further considered in the study. Water abstraction comprises four pipes 
connecting different numbers of wells to the raw water tank or in a bypass directly to the 
waterworks inlet (see Figure 20). Static elevation was 10 m to the raw water tank inlet and 8 m 
to the waterworks inlet. The median age of the installed pumps (at the time of the audit) is 5.5 
years (1st quantile: 1 year; 3rd quantile: 6.75 years). Looking at all 19 pumps, manufacturer pump 
characteristics for the pumps at the best efficiency point as documented by the operator are:  

- Total dynamic head: varying by +-120% (median: 17m, min: 11m, max: 27m) 

- Global pump efficiency: varying by +- 4% (median: 59%, min: 58 %, max: 63%) 

- Pumping rate: varying by +- 25% (median: 120m³/h, min: 90 m³/h , max: 160 m³/h) 

For the site audit, wells W4 and W6 were not operated because of water quality issues and 
pump p103 was not operated because of pump damage. These wells / pumps were not 
considered for the field work. 

 

 

Figure 20 Simplified map of the Site C well field. Note that the pumps in wells W4 and W6 are not operated due to 
water quality problems. The pump p103 in well W10 was damaged in May 2015 and thus could not be 
audited. 

 

The well field is usually operated following a fixed pumping scheme responding to the demand 
variations. In a first data analysis step, the operation scheme was analysed and monthly 
variations of pumping scheme, abstracted volumes and related specific energy demand of the 
well field were visualized. The temporal development of the specific energy demand for the 
period of January 2012 to August 2014 is shown in Figure 21.  
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While the pump prioritisation (i.e. the order which pumps were put in operation first) was not 
changed for the well field by the operator within this period, six out of nineteen submersible 
pumps were renewed within one year (November 2012 until November 2013). These renewals 
already reduced the specific energy demand by 20% (Figure 22). The highest saving potential 
was explained by the replacement of pump p101 (-17.7 %) and p2 (-8.1 %) while replacement of 
the other four pumps had no further significant impact on the specific energy demand (Figure 
22). 

 

Figure 21  Temporal development of specific energy demand for raw water abstraction for the wellfield. The red 
labels indicate pump replacements   

 

Figure 22  Impact of the pump renewal of six pumps within one year on the specific energy demand of the well field 
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3.3.2 Pump audit 

A pump audit was carried out within four days in May 2014 by KWB in order to assess the actual 
pump characteristics. During the pump audit, the whole well field was stopped and only the 
audited pump was operated. The valve to the waterworks was closed and all water was 
conveyed to the raw water tank (see Figure 20). Furthermore, the valve at the raw water tank 
outlet was closed. A water level logger was put in reservoir to measure the water level increase 
over time. The average pumping rate was then calculated by dividing the tank volume increase 
(multiplying water level increase in tank with the known tank area) with the total pumping time.  

In contrast to first two audits, power demand was not measured directly at the pumps but in the 
building close to the waterworks. Consequently, potential cable losses (assumption: ~ 3%) are 
already included in the power demand measurement, so that the pump’s global efficiency is 
underestimated (assuming that both, total dynamic head and pumping rate were measured 
precisely). Within four days in May 2014, two different types of audit were carried out: 

- Specific energy demand (“simple”) audit (for all 14 pumps): only pumping rate and 
power demand were measured for 10 minutes for each pump at the maximum pumping 
rate (Figure 23).  

- Pump characteristics audit (for 9 pumps): pumping rate, power demand, pressure in the 
pipe and water level in the production well were logged for different pumping rates (if 
possible) for approximately 30 minutes per pump. This enabled to derive both, pump 
and global efficiency curves for each pump and each pumping rate (Figure 24 & Figure 
23). 

 

Figure 23  Impact of changed pump characteristics (i.e. due to ageing, cavitation) on the specific energy demand. 
Note that the specific energy demand was not only measured during the pump characteristics audit (red 
lines with dots) but also during an additional specific energy demand audit (green dots) for the maximum 
pumping rate of each pump. 
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Figure 24 Comparison of audit (red lines with dots) and manufacturer (blue lines with dots) pump characteristics for 
both, total dynamic head (top panel) and global efficiency (bottom panel) 
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3.3.3 Data-driven modelling 

Instead of applying the process-driven modelling approach by parameterising, calibrating and 
validating a hydraulic EPANET model (as for the first two case studies), for the third case study, a 
data-driven approach was developed. It required the following input parameters:  

1) Audit specific energy demand curves 𝐸𝑠𝑝𝑒𝑐,𝑝𝑖
 (purple lines in Figure 26): manufacturer 

specific energy demand curves (blue lines, Figure 26) are corrected with a constant 
offset that is derived from the specific energy demand audit for all pumps at maximum 
pumping rate (Figure 25). 

2) Monthly median pumping rate of each pump 𝑄𝑝1
(Figure 27): from operational data, 10-

minute volume meter data for 10 pumps were available. For 5 pumps (p101, p102, p103, 
p111, p112) in wells 10 and 11, only the operating hours were available. Thus the 
maximum pumping rate during audit was used as proxy. Multiplying monthly operating 
hours with the constant (estimated) pumping rate for each pump, the monthly 
production volumes are calculated. 

3) Share of each pump to the total monthly abstraction 𝑆ℎ𝑎𝑟𝑒𝑝𝑖
 (Figure 28): based on the 

monthly sums of the volume meter for each pump (measured by the operator every 10 
minutes) the percental contribution of each pump to the total abstraction volume was 
calculated.  

 

With the above-described input data, the specific energy demand of the well field can be 
calculated for each month according to the following equation:  

𝐸𝑠𝑝𝑒𝑐,𝑤𝑒𝑙𝑙𝑓𝑖𝑒𝑙𝑑(𝑄𝑝1−𝑛
, 𝑆ℎ𝑎𝑟𝑒𝑝𝑖−𝑛

) = 𝑆ℎ𝑎𝑟𝑒𝑝1
∙ 𝐸𝑠𝑝𝑒𝑐,𝑝1

(𝑄𝑝1
)+ . . . + 𝑆ℎ𝑎𝑟𝑒𝑝𝑛

∙ 𝐸𝑠𝑝𝑒𝑐,𝑝𝑛
(𝑄𝑝𝑛

) 

with: 

 𝑆ℎ𝑎𝑟𝑒𝑝𝑖
 percental abstraction share of pump i (e.g. 0 -> not operating, 1 -> whole well field  

  abstraction)  

 𝑄𝑝𝑖
  pumping rate of pump i (m³/h) 

 𝐸𝑠𝑝𝑒𝑐,𝑝𝑖
 audit specific energy demand curve of pump i 

 

The above equation was then used for predictive modelling by using the real volume abstraction 
share of each pump as model input parameter. In case of optimisation modelling by means of 
smart well field management, this information is not required, but the pumps are re-prioritised. 
Accordingly, the equation simplifies to:  

𝐸𝑠𝑝𝑒𝑐,𝑤𝑒𝑙𝑙𝑓𝑖𝑒𝑙𝑑(𝑄𝑝1−𝑛
) =

𝑄𝑝1

𝑄𝑝1
+. . . +𝑄𝑝𝑛

∙ 𝐸𝑠𝑝𝑒𝑐,𝑝1
(𝑄𝑝1

)+ . . . + 
𝑄𝑝𝑛

𝑄𝑝1
+. . . +𝑄𝑝𝑛

∙ 𝐸𝑠𝑝𝑒𝑐,𝑝𝑛
(𝑄𝑝𝑛

) 

with: 

 𝑄𝑝𝑖
  pumping rate of pump i (m³/h) 

 𝐸𝑠𝑝𝑒𝑐,𝑝𝑖
 audit specific energy demand curve of pump I (pumps are ordered ascending from low to 

  high specific energy demand)  
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Figure 25 Offset between manufacturer data and audit results for the specific energy demand of the audited pumps 
(pump p103 was out of operation at time of audit and thus not measured, so that manufacturer 
characteristics are assumed for this pump (the offset is zero) 

 

 

Figure 26 First model input parameter: audit specific energy demand curves from adding the offset value from audit 
to all manufacturer curves. Note that p103 was renewed after the audit in June 2014. Thus, the offset 
manufacturer curve is used instead 
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Figure 27 Second model input parameter: monthly median pumping rate for the period April to August 2014 
calculated from LERNE data. Note that for four pumps (p101, p102, p111, p112) the maximum pumping 
rate from the audit was used. For pump p103 (renewed in June), a pumping rate of 210 m³/h was 
assumed. 

 

Figure 28 Third model input parameter: percental abstraction volume for the period April to August 2014 calculated 
from LERNE data. For five pumps (p101, p102, p103, p111, p112), the abstraction share needed to be 
calculated by multiplying the median monthly pumping rate with the operating hours of each pump. 
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3.3.4 Results  

Predictive modelling  

The predictive performance of the data-driven model is shown in Figure 29, indicating a good fit 
(underestimation varying from 0.5% to 5%) compared to the specific energy demand measured 
by the operator for the months June to August 2014. Uncertainties in the predictive model 
performance for this period can mainly be attributed to the following causes:  

(i) unknown volume meter data for 5 pumps (p101,p102,p103, p111, p112) in well 10 & 
11: leading to an increased (not quantifiable) uncertainty for three input parameters 

(ii) lack of continuous energy demand measurements: extrapolation using a linear offset to 
the manufacturer curves may be too simplified. However, as no real-time measurement 
for the power demand for each pump is available, this error is not quantifiable. 

Nevertheless, the resulting model prediction error is in the range of the measurement 
uncertainties for volume, pumping rate and power demand, which indicates an acceptable 
model performance. 

The comparably larger offset for the months April and May 2014 can be explained by the fact 
that the pumps p12, p13 and p14 (in the wells 12 to 14) were electrically wrongly connected 
(phase-shifted), so that the pump was running in the wrong direction up to the audit in mid May 
2015. Thus, the median monthly pumping rate for at least two out of the three pumps was zero 
(p13, p14) for this period, so that their operation was not considered in the data-driven model 
although they were actually operating.  

 

Figure 29 Predictive modelling performance: measured (monthly by the operator) vs modelled specific energy 
demand for the wellfield abstraction. 
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Optimisation 

Within data-driven modelling, only energetic optimisation by means of “smart well field 
management” was assessed. The “smart well field management” optimisation relies on the 
following input parameters: 

(i) the audit specific energy demand curves (purple lines, Figure 26) 

(ii) the monthly median discharge rate per pump (Figure 27) 

(iii) the hourly average water demand per month 

 

Using this information, the pumps with the lowest specific energy demand were set into 
operation first, adding pumps until the hourly average water demand for the respective month 
was met. The resulting specific energy demand of this strategy was then compared against the 
base scenario (i.e. operator’s pump priorities, Figure 30). From the results, it could be seen that 
smart well field management highly prioritised the pumps p7, p102 and p14. For the modelled 
months after the audit, the specific energy demand of the well field could be reduced between 
20% (June, July 2014) and 12% (August 2014) compared to the measured real specific energy 
demand. On the other hand, the evaluation of the pre-audit energy demand showed that the 
renewal of 6 pumps in 2013 already reduced the total energy demand of the well field by 20% 
and the correction of phase-shifted pumps p12, p13 and p14 further reduced the total energy 
demand of the well field by approximately 12% (Dec. 2013 to April 2014 versus June to August 
2014).  

The pump p14 is highly prioritised in the smart well field management scenario (top three 
priority within months June to August 2014, Figure 30) but showed the largest offset between 
manufacturer and audit specific energy demand (+38% for pumping rate of 130 m³/h, Figure 24 
and Figure 25). Thus, it is recommended to replace this 6 years old pump. For the p10 and p11 it 
is further recommended to verify the total pressure head, which was significantly higher (up to 
40%, Figure 25) compared to the other wells, thus leading to increased specific energy demands 
(Figure 26). Furthermore, the specific energy demand of whole well field decreased by 12% after 
the pump audit (Figure 22) although the operating scheme was not changed (Figure 27 and 
Figure 28). To which extent this could be contributed to correcting the phase shift of pump p12, 
p13 and p14 was not further evaluated.  
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Figure 30 Energetic optimisation potential by smart well field management (i.e. re-defining of operator’s current 
pump priorities). The operator’s water demand and specific energy demand for each month are indicated 
with dashed grey lines. 
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3.3.5 Conclusions 

As described in Chapter 3.3.2, cable losses could not be separated from the specific energy 
demand of the pumps because of the point of measurement. For the data-driven modelling 
approach, pipe losses were also not validated. To which extent the modelled specific energy 
demand of the well field for the smart well field management scenario may be underestimated 
or overestimated due to the changed priorities of pumps and its effects on pipe losses (from well 
position within the pipe and operating pumps at lower/ higher demand conditions than before) 
was not assessed. Lower pipe losses are expected for pumps that had low priority and are now 
operated earlier, and higher pipe losses for pumps that formerly had high priority (e.g. p1) but 
have a lower priority in the smart well field management scenario. If significant, these effects 
lead to a shift in the pumping rate, which in turn impacts the specific energy demand of the 
pumps in operation. 

In general, the data-driven model cannot be taken to predict the energy demand of unknown 
scenarios with different boundary conditions, as operational data are needed as input. Thus, 
pump renewal schemes could not be calculated before being really implemented. In order to 
overcome that limitation, an extended real-time monitoring could be implemented (i.e. logging 
both, the abstracted volume and the power demand for all pumps).  

The advantages of the data-driven modelling approach compared to the process-driven 
modelling used for the two former case studies can be summarised as follows: 

 Simplicity: as the model only needs three input parameters for predicting the specific 
energy demand of the well field, its algorithm is simple and highly transparent, thus this 
approach is well adapted for being integrated in the operator’s information system  

 Scalability: in case of the availability of data loggers for volume and power demand for 
all pumps, the data-driven model can be easily scaled to larger well fields. For example, a 
well field with hundreds of pumps without requiring time-consuming and fast outdated 
pump audits. In addition, no complex model setup and calibration as required for 
process-driven modelling is required, which in turn enables real-time forecasting and 
feedback for the operator on the energetic performance of the well field. 
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Chapter 4  

Cross-case analysis 

4.1.1 Case study site characteristics  

System boundary 

The system boundary of the three case study sites differed between Site B and the other two 
study sites (Site A, Site C). The Site B well field is directly connected to the distribution network, 
thus the system boundary inherently included the distribution network. Contrary, the system 
boundary for the other two sites was limited either to the pipe inlet at the waterworks (Site A) 
or the raw water tank before the waterworks (Site C), so that it included only the water 
abstraction process without water distribution.  

Manufacturer pump characteristics 

On the basis of using manufacturer pump characteristics and assuming that all pumps are 
operating on their best efficiency point, the submersible pumps of the three different sites can 
be compared as shown in Figure 31. Both, total dynamic head (TDH, top panel Figure 31) and 
pumping rates (middle panel Figure 31) at the best efficiency point are highest for the Site B well 
field, leading to a in median ten percent higher global efficiency (bottom panel Figure 31) 
compared to the Site A or Site C well field. This can be explained by the fact that pumps with 
higher hydraulic power demand, i.e. pumping rate multiplied with total dynamic head, usually 
have a higher global efficiency (Höchel 2012).  

The resulting specific energy demand (Figure 32) for the Site B well field is in median four times 
higher compared to the Site C well field, which can be attributed to the approximately four times 
higher total dynamic head (top panel Figure 31) in case of the former. However, the Site C well 
field has the highest variability of the specific energy demand between the pumps (varying by 
more than 240%, from 0.05 to 0.12 kwh/m³). This can be explained by the large variability of the 
total dynamic head (top panel Figure 31) within the Site C well field, which varies in same order 
of magnitude (by 240% from 10 m to 24 m). This cannot be explained by significantly different 
geometrical elevations, because the wells are located within a small well field with similar static 
water and well drawdowns (top panel Figure 34). Thus, in case that the assumption that the 
current pump operation is close to the pumps’ best efficiency points is true (which was 
confirmed by the pump audit, see Figure 23 in Chapter 3.3.2), the only possible explanation of 
this phenomena can be either pump ageing or increased pipe head losses (e.g. due to 
incrustations) for some parts of the well field.  

The median pump age (Figure 33) at the time of the pump audits was comparable for Site C (5.5 
years) and Site A (4.5 years), but significantly higher in case of Site B (8.5 years). In case of Site B, 
the pump age variability was much higher, too (ranging from 0 to 40 years) making it more likely 
that the current in-situ pump characteristics will show a significant offset for these pumps (e.g. 
due to pump ageing or cavitation).  
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Figure 31 Manufacturer pump characteristics at best efficiency point for the pumps of the three case study sites. The 
number indicates the median value 
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Figure 32 Specific energy demand of the pumps of the three sites due to manufacturer pump characteristics at best 
efficiency point (Figure 33). The number indicates the median specific energy demand 

 

 

Figure 33 Age of the pumps (at the time of the pump audits) for the three case study sites. The number indicates the 
median age 
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Contribution of system components to required pump head 

On the basis of using manufacturer pump characteristics and assuming that all pumps are 
operating on their best efficiency point, the total dynamic head for each pump (top panel Figure 
31) was separated into the three system components (Figure 34):  

 static elevation,  

 well drawdown and  

 pipe losses.  

As Figure 34 clearly shows, the static elevation is the most important system component, which 
accounts in median for 60 to 75 percent of total pump head (bottom panel Figure 34), followed 
by pipe losses (23 to 36 percent of total pump head) and well drawdown (2 to 13 percent of 
total pump head).  

In a nutshell, because 98 percent of the total pump head (Site B, Site A) can be attributed to the 
two system components static elevation and pipe losses, including steady-state well drawdown 
into process-driven modelling will not improve the specific energy demand modelling prediction 
significantly. 

 

 

Figure 34 Absolute (top panel) and percental share (bottom panel) of pump head for the different system 
components. Pipe losses are calculated by subtracting the static elevation and well drawdown (both based 
on measured data) from the total dynamic head. 
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4.1.2 Data availability 

The data availability for the three different case-study sites differed significantly as shown in 
Table 6. The four parameters listed in Table 6 are required for assessing the current pump 
characteristics. 

For the two study sites located in France (Site B, Site C), operational data were available on a 
high temporal resolution (every ten minutes) due to automatic data logging at least for the two 
parameters pumping rate (derived from volume meters) and water levels in the wells. In case of 
the Site A well field, these data were only available with an insufficient temporal resolution (bi-
weekly manual readings).  

Neither pressure head nor the power demand for each individual pump was available for any of 
the studied case study sites. However, the total power demand was available for the whole well 
field with sufficient temporal resolution (weekly to monthly), which together with the monthly 
well field abstraction volumes was used for calculating the specific energy demand for each of 
the three well fields.  

Consequently, operational data availability for all three case study sites was insufficient for 
optimising the well field’s energy demand by means of process-driven or data-driven modelling. 
To overcome this data bottleneck, pump audits were performed for all three case studies (see 
Chapter 3.1.2, 3.2.2, 3.3.2), which enabled the assessment of actual pump characteristics.  
These audit pump characteristics were subsequently used as inputs for process-driven (pump 
and global efficiency curves of pumps) and data-driven (specific energy demand curves of 
pumps) modelling, as will be summarized in the following chapter. Note that the information 
gain due to pump audits is limited, as these are only snapshots of the pump condition (i.e. 
assuming no change in pump performance over time) and can be quite fast outdated (e.g. in 
case of pump replacement).  

 

Table 6 Operational data availability for the three case-study sites 

Available parameters 
Case study site 

Site A Site B Site C 

Pumping rate per pump(Q) 
bi-weekly 
(manually) 

volumemeter loggers (every 10 
minutes) 

Water level in well (H) 
bi-weekly 
(manually) 

water level loggers (every 10 
minutes) 

Pressure head (P) per pump no 

Power demand per pump* (E) 
weekly bi-weekly  monthly 

* only  total energy demand of well field  
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4.1.3 Modelling 

For the three case study sites, the modelling results for sensitivity analysis (in case of process-
driven modelling), predictive performance and energetic optimisation potentials can be 
summarized as follows. 

Sensitivity analysis 

The impact of simplifying the hydraulically calibrated process-driven model based on audit 
curves and steady-state drawdown (left column Figure 35) on the predicted well field’s specific 
energy demand is studied by means of the sensitivity analysis for the two case studies Site A and 
Site B. The key results can be summarised as follows:  

- Well drawdown: including steady-state well drawdown (steady-state DD) improves 
specific energy demand prediction at maximum by 10 % (Site A) but only less than 1 % in 
case of Site B. Well interference was not observed at Site B (due to the large distances 
between wells), and even for Site A it did not play a significant role (maximum additional 
drawdown due to well interference is 0.4m which is less than 1% of total head) thus not 
affecting the specific energy demand. 

- Pump characteristics: using audit instead of manufacturer pump characteristics is much 
more important for the Site B well field (prediction error reduction of 40%) with older 
pumps (up to 40 years) compared to the Site A well field (prediction error reduction of 
5%), which has much newer pumps (all less than eight years old).  

 

Figure 35 Sensitivity analysis for process-driven modelling case studies. Note the box-whisker plots in case of the Site 
A case study are due to the unknown pump operation (e.g. which pumps are operated in parallel), which 
could be only eliminated if data of pump on/off statuses for all pumps were available  
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Predictive modelling 

The predictive performance of the well field’s specific energy demand for both, process-driven 
and data-driven modelling approaches is shown in Figure 36. 

In general, the predictive performance of, both process-driven and data-driven modelling 
approaches is highly accurate: the operator’s measured specific energy demand is 
underestimated by the models between 2 – 17 % (Site A) to 4 % (Site B, Site C). The offset 
variability in case of Site A (2% - 17%) can be attributed to the fact that no data on the used 
pump operation scheme of the operator during the study period was available. Consequently, 
this range covers all possible operation schemes.  

All three case studies underestimate the operator’s measured energy demand. A possible 
explanation in case of the two process-driven models is the fact that these pump audits were 
performed in the production well close to the submersible pump, thus not taking into account 
additional cable losses (between the well and the main electricity station). In contrast, in case of 
the Site C case study, the pump audit inherently included the cable losses, because the power 
demand measurement was performed in the main electricity station. Thus, for Site C the offset 
between predicted and measured specific energy demand can only be attributed to (i) possible 
measurement errors during the pump audit (3.3.2) for assessing the specific energy demand 
curves and (ii) the data-driven model input parameters (Chapter 3.3.3). 

 

Figure 36 Predictive modelling performance of the hydraulically calibrated process-driven models (Site A, St.Louis) 
using audit pump curves and steady-state well and data-driven model (Site C). Note the box-whisker plot 
in case of the Site A case study is due to the unknown pump operation scheme (e.g. which pumps are 
operated in parallel), which could be only eliminated if data of pump on/off statuses for all pumps were 
available 
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Optimisation 

Within OPTIWELLS-2, the optimisation objective was to minimise the well field’s specific energy 
demand for water abstraction, whilst satisfying two boundary conditions: 

- Water quantity: average hourly water production rate required to satisfy water demand 

- Water quality: raw water quality in line with drinking water guideline threshold value  

Taking these two constraints into account,  

Table 7 summarises the maximum achievable percental specific energy demand reduction for 
each of the three case study well fields.  

Neither smart well field management alone nor combining it with the renewal of the two aged 
pumps (p2 and p6) does reduce the specific energy demand of the best-case operation scheme 
by more than 3% for the Site A well field. However, although investing in new pumps does not 
minimise the specific energy demand of the best-case pumping configuration, it minimises the 
risk of selecting a very inefficient pump and is thus reducing the specific energy demand 
variability of all possible operation schemes (see also Figure 13). 

In contrast, the Site B well field has a large potential for specific energy demand reduction 
ranging from 18 % (smart well field management only) to 48% (in case smart well field 
management is combined with the replacement of two pumps p_K and p1).  

While the first two case studies were performed using a process-driven approach, a data-driven 
modelling approach was chosen for the third case study well field Site C. In case of smart well 
field management only, the specific energy demand reduction potential varied between 12 and 
20%. However, it was not possible to study the impact of hypothetical pump renewal in the 
data-driven modelling approach used for Site C, because its application is limited to constant 
boundary conditions. 

 

Table 7 Maximum percental reduction of specific energy demand for the three case studies taking into account 
both, water demand and water quality constraints. 

Management strategy 
Process-driven modelling Data-driven modelling 

Site A Site B Site C 

Smart well field management 3 % 18 % 12 - 20 % 

Combination of smart well field 
management and pump renewal  

3 % 48 % not possible* 

 

*As data-driven modelling is limited to constant boundary conditions, it is not possible to study the impact of 
hypothetical pump renewal as this would change the boundary conditions. 
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Chapter 5  

Critical review of modelling approaches & value of monitoring 

Within OptiWells-2, two modelling approaches, data-driven and process-driven, were used for 
optimizing the specific energy demand of the case study well fields. These approaches differ not 
only in their data requirements, setup and complexity, but also in their limitations (e.g. is the 
application of a data-driven model valid in case of changed boundary conditions?).  

This chapter provides a critical review on both modelling approaches and proposes a pragmatic 
step-wise energetic well field assessment methodology (Figure 37) as defined below:  

1. Initial assessment: if the well field`s actual specific energy demand is significantly higher 
than the theoretical one calculated using the theoretical specific energy curves of the 
pumps (i.e. >> 10%deviation), it is recommended to proceed with modelling, otherwise 
to stop after the initial assessment step. 

2. Modelling: data-driven modelling (see Chapter 2.3.1) is valid as long as changing 
boundary conditions (e.g. well field operation) do not impact the pumps’ operating 
points significantly. If this condition is not satisfied or if predictions are needed for new 
boundary conditions, which would impact the pumps` operating points significantly (e.g. 
replacement of raw water pipes), the more data-demanding and more complex process-
driven modelling (see Chapter 2.3.2) needs to be carried out. 

The level of data prerequisites for each step is indicated by the size of the blue database symbols 

 in Figure 37. These data prerequisites are explained in more detail in Figure 38, showing that 
the initial assessment has the least data-requirements, whilst process-driven modelling has the 
highest data-requirements. Furthermore, process-driven modelling is more time-demanding 
compared to data-driven modelling, because it requires the setup of the pipe network system as 
well as a model calibration steps, so that the offset between measured and simulated pumping 
rates is minimised (by changing the unknown pipe characteristics roughness or/and its effective 
diameter). Data-driven modelling is sufficient in case that only the impact of smart well field 
management on the specific energy demand of the well field should be assessed. Whenever 
energy demand predictions for different boundary conditions are required (e.g. due to pump 
replacement or pipe renewal), process-driven modelling needs to be performed.  

 

Figure 37 Flowchart for step-wise energetic well field assessment methodology. The level of data-prerequisites for 
each step are indicated by the size of the blue database symbols  and explained in more detail in Figure 
38 
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Figure 38 Data-requirements for performing energetic well-field optimisation. Note that process-driven modelling 
relies on both, data used for initial assessment and data-driven modelling 

The value of monitoring data collected during each assessment step (Figure 38) for determining 
the actual pump characteristics of each pump is shown in Table 8.  

The initial assessment assumes that all pumps follow their theoretical characteristics as defined 
in the manufacturer pump catalogues. The additional data collected for the data-driven 
modelling step (energy demand per pump) allow to derive the actual specific energy demand 
per pump, but still do not enable to identify offsets for both, theoretical pump curve and global 
efficiency curves. In case that data for both, static head and well drawdown curves for each 
pump are available and that in addition the pipe loss is calculated using the Hazen-Williams 
equation (see Chapter 2.1), the actual pump curves can roughly be estimated. This enables the 
identification of pumps with high mechanical ageing potential indicated by a large offset to the 
theoretical pump curves. Before replacing these pumps with new ones, a cross-check by field 
measurements of pressure and well drawdown for the concerned pumps is however 
recommended. 

Only in case of the process-driven modelling step, where additional information for each pump 
(i.e. pressure at wellhead & dynamic water level in well) is collected, the actual pump and global 
efficiency characteristics for each single pump can be calculated. 

 

Table 8  Value of monitoring data collected during each assessment step (Figure 38) for determining the actual 
pump characteristics of each pump. Asterisks (*) indicate that actual pump curve characteristics can be at 
least roughly estimated in case that additional data for both, static head and well drawdown curves for 
each pump are available and in addition the pipe loss is calculated using the Hazen-Williams equation (see 
Chapter 2.1). 

  
Pump characteristics 

 

Pump  
curve 

Global efficiency  
curve 

Specific energy  
demand curve 

Initial assessment Theoretical* Theoretical Theoretical 

Modelling 
Data-driven  Theoretical* Theoretical Actual 

Process-driven Actual Actual Actual 

 

In the following, each step of the general flowchart (Figure 37) is explained in more detail. 



 

50 

 

Initial assessment 

The initial assessment is based on the operator’s data for each pump (abstracted volume, 
pumping rate, pump type & manufacturer) and for the well field (total abstraction & energy 
demand) in combination with theoretical pump characteristics derived from manufacturer pump 
catalogues. Consequently, the theoretical specific energy demand of the well field can be 
calculated using a data-driven approach (see Chapter 3.3.3) and compared to the operator`s 
current specific energy demand at the well field scale.  

In case that the actual specific energy demand shows more than 10 % deviation compared to the 
theoretical one, it is recommended to proceed with modelling, otherwise energetic well field 
optimisation is not required.  

The initial assessment needs to answer the following three questions:  

1. Do the pumps with the lowest theoretical specific energy demand abstract most of the 
water? (if no: reprioritise pumping operation to place pumps with lowest specific energy 
demand in operation first and redo initial assessment) 

2. Is the pumping rate for any of the pumps varying more than 40% compared to the 
pumping rate at the best efficiency point? (if yes: check whether VSD pumps are 
beneficial compared to fixed speed pumps and if so equip these pumps with VSDs in the 
well field and redo initial assessment) 

3. Are there pumps that are always operated with a pumping rate lower than 80% of the 
pump’s theoretical best-efficiency point pumping rate? (if yes: replace these under-
dimensioned or mechanically aged pumps and redo initial assessment) 

If question (1) is answered with ‘yes’, and (2) and (3) with ‘no’, the well field’s energy saving 
potential can be regarded as low. Otherwise, the recommended countermeasures for each of 
the options above need to be implemented first before redoing the initial assessment to check 
the impact of these changes on the well field’s specific energy demand. Figure 39 summarizes 
the procedure.  

Limitations of this approach:  

It needs to be noted that the initial assessment relies heavily on measured data (pumping rate 
and abstracted volume per pump). Consequently, the impact of proposed measures (e.g. pump 
reprioritisation) can only be evaluated once these measures are actually implemented for the 
well field and the initial assessment is repeated (i.e. comparing theoretical and actual specific 
energy demand).  
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Figure 39 Initial assessment flowchart  

 

Data-driven modelling  

Data-driven modelling is performed if (i) the initial assessment yielded that the actual specific 
energy demand of the well field is significantly higher than the theoretical one (rule-of thumb: 
>> 10%) and (ii) investment in new pumps or pipes is not planned (smart well field management, 
only). The general steps for data-driven modelling are explained in Chapter 2.3.2, whilst an 
example for applying this approach is summarised in Chapter 3.3.3 for the third case study site. 
The advantages of using data-driven modelling compared to process-driven modelling is that it 
requires much less input data, no spatial model parameterisation and no model calibration. 
Consequently, its application is less complex and time-demanding, making it feasible for being 
integrated into the operator’s information system and providing real-time forecasts of the well 
field’s specific energy demand for different operating schemes. Figure 40 summarizes the 
procedure.  
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Figure 40 Data-driven modelling flowchart  

Limitations of this approach:  

As the initial assessment, the data-driven modelling relies on measured data only. Thus, its 
application is limited to comparable boundary conditions. For example, smart well field 
management reprioritizes the well field’s pump operation to prefer pumps with low specific 
energy demand for a given pumping rate (e.g. median monthly from operator’s data). However, 
changing formerly low prioritized pumps (i.e. pumps only used during peak well field abstraction 
conditions) to high priority pumps will also impact the pumping rate and pipe losses because of 
their positions in the well field and number of pumps in operation etc. Thus, the approach is 
recommended for small well fields with large pipe diameters and comparable low median well 
field pumping rates, only. In any case, after implementing the new pump operation scheme 
proposed by the data-driven model for the well field, a possible offset of the pumping rate is 
immediately visible in the operational data. Consequently, the data-driven model can be re-run, 
leading to more precise specific energy demand forecasts. 

Process-driven modelling  

Process-driven modelling is performed in case that the initial assessment yielded that the actual 
specific energy demand of the well field is significantly higher than the theoretical one (rule-of 
thumb: >> 10%) and that energetic saving predictions are required for management measures 
with capital investments (e.g. pump renewal or pipe replacement with larger diameter) leading 
to changed boundary conditions (i.e. different pump or system characteristics).  

Prior to calculating energy demands, the level of detail for representing the groundwater 
component needs to be estimated. This includes well drawdown as part of the dynamic head 
and well interference. Well drawdown measurements from multiple-step pumping tests are 
compared to the static head component:  

1. Well drawdown at maximum pumping rate is >> 10% of static head 

if yes: well drawdown should be considered by adding a discharge-dependent head loss 
term 

if no: well drawdown can be neglected, considering static groundwater levels is sufficient  

2. Well interference at maximum pumping rate is >> 10% of static head 
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if yes: well interference should be considered by adding the maximum observed 
interference at the end of the pumping test to the static groundwater level, whenever 
interfering wells are operated parallel 

if no: well interference can be neglected 

 

Consequently, process-driven modelling is performed (see Chapter 2.3.1 for more details) 
considering the groundwater component as described above. Finally, it enables not only to 
predict the energetic saving potential for different management strategies (smart well field 
management, pump renewal or combination of both), but also to calculate the actual 
performance of each pump (global efficiency, specific energy demand and pump curve offset to 
theoretical one) for a given well field operation scheme. Figure 41 summarizes the procedure.  

 

Figure 41 Process-driven modelling flowchart  

Limitations of this approach:  

Besides the fact that process-driven modelling is the most flexible approach, it is also the most 
data- and time-demanding one, requiring at least five operational parameters for each pump 
(pumping rate, energy demand, pressure at well head, water level in well and abstraction 
volume). In case these data are not available, process-driven modelling is still possible, but with 
uncertain predictive accuracy. The second case study site (see Chapter 3.2) showed for example 
that especially in case of well fields with aged pumps the use of theoretical pump curves can 
underestimate the actual specific energy demand by more than 40%.  

In addition, process-driven modelling is only possible if the whole pipe network of the well field 
is digitalised and calibrated (i.e. by modifying the pipe network characteristics until the error 
between measured and simulated pumping rates is acceptably small, usually < 5%). This is not 
only a time-demanding, but also a non-trivial task due to the non-linear increase of pipe losses (if 
the pipe diameter is reduced). Furthermore, calibration is not scalable and needs thus to be 
repeated for each new well field. 
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Chapter 6  

Conclusions & Outlook 

6.1 Recommendations for energy optimisation of well fields 

“I often say that when you can measure what you are speaking about, and express it in numbers, 
you know something about it; but when you cannot measure it, when you cannot express it in 
numbers, your knowledge is of a meagre and unsatisfactory kind.” (Lord Kelvin) 

6.1.1 Data prerequisites 

A key characteristic of all case study sites is the lack of operational data. These data are either 
completely not available (e.g. pressure in the pipe(s), power demand of pumps) or do not have 
the adequate temporal resolution (e.g. bi-weekly water level readings for Site A well field). 
Within OPTIWELLS-2, this lack of real-time data was overcome by performing pump audits. 
These typically took 60-90 minutes per pump including installation of measurement equipment 
and enabled assessing the current in-situ pump characteristics (i.e. pump and global efficiency 
curves). The obtained data were a prerequisite for setting up a process-driven EPANET model of 
the well field abstraction systems.  

Furthermore, as pumps are replaced in frequent intervals (e.g. Site C: six pumps within a year), 
any prediction based on models using these “snapshot” pump characteristics from audits as 
input parameters are quite fast outdated. In order to overcome this problem, the 
implementation of more data loggers for real-time monitoring is recommended, which would in 
future allow to assess the following operational parameters for each pump with an adequate 
temporal resolution (depending on the pump switching frequency):  

 Pumping rate (or volume meter) of each pump 

 Power demand of each pump 

These data are the minimum requirements in case of the data-driven modelling approach used 
for the third case study (Chapter 3.3) and in case of process-driven modelling (Chapters 3.1 and 
3.2) the following additional input parameters are required:  

 Pipe network geometry 

 Pump characteristics (pump and global efficiency curves) and  

 Well drawdown (only in case that this contribution is significant compared to the 
sum of static head and pipe losses)  

 

Based on these data, the process-driven hydraulic model (EPANET) needs to be parameterised, 
calibrated and validated before it can be used for predicting and optimising the specific energy 
demand of the well field. Compared to the data-driven modelling approach, these additional 
steps in case of process-driven modelling are not only more time-consuming, but also its 
predictive model performance is less robust. This is due to the fact that (i) the process-driven 
workflow relies on much more data prerequisites that are all potential sources of uncertainty 
(Chapter 2.5) and (ii) in addition, model calibration may lead to overfitting, thus reducing the 
model generalisation (i.e. low predictive model performance in case of unseen data).  

Thus, only in case that a quantitative assessment of the impact of a hypothetical pump renewal 
(i.e. new pump with different pump characteristics) is required, process-driven modelling is 
advantageous because by using a data-driven modelling approach it is not possible to vary the 
pump characteristics hypothetically. 
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6.1.2 Development of advanced pump catalogue database 

Within OPTIWELLS-2, optimisation modelling for minimising the specific energy demand of the 
case study well fields was limited to three management strategies: smart well field 
management, pump renewal (of the same type that is currently installed) or a combination of 
both. However, this neglects two further possible management strategies:  

- Pump replacement with different pump type: this measure may be indicated in case 
that the currently installed pump is either wrongly dimensioned (rule-of-thumb: not 
operating within 80 – 120 % of the best-efficiency point’s pumping rate) or the pump’s 
global efficiency at the best-efficiency point is significant lower compared to the best 
currently available pumps from the manufacturer catalogue. 

- Equipment of submersible pumps with variable speed drives (VSD): in case that the 
operational data for a given pump shows that the pumping rate is highly variable (rule-
of-thumb: operating point varies by more than 40%, i.e. below 80% and above 120% of 
the pumping rate at the best-efficiency point), equipping the pump with a VSD could be 
a measure to reduce the specific energy demand (see also deliverable D 1.2, (Bauer et al. 
2014). However, at least for the studied case study sites, the pumping rate variability 
was with less than 10% rather low, thus it is not recommended to install VSDs for 
improving the specific energy demand.  

 

To overcome this limitation it was decided to further enhance an already existing pump 
catalogue, developed in MS EXCEL by TU Berlin within OPTIWELLS-1. While the current EXCEL 
version contains the best-efficiency point pump characteristics of 3200 pump aggregates (i.e. 
combination of pump types and different number of stages) from ten different pump 
manufacturers (Höchel 2012), within OPTIWELLS-2 this pump catalogue (Figure 42) was 
enhanced by:  

- Multiple data points for each pump aggregate: the pump, global efficiency and net 
pressure suction head curves for all pump aggregates were digitalised.  

- Transformation into MS ACCESS database: enabling user-friendly cross-manufacturer 
comparison of the 3200 pump aggregates based on user-defined filter criteria (i.e. pump 
head or pumping rate at best-efficiency point, pump size or tolerance class), thus 
simplifying the operator’s workflow for identifying a small set of pumps, which fit his 
conveying task best (see also deliverable D2.2, (Sonnenberg & Rustler 2015)) 

- Meta-information on VSD usage of pump motors: integration of constraints defined by 
the pump manufacturer (e.g. minimum/maximum VSD frequency) in the pump 
catalogues. 

Data from the pump catalogue can be exported and used as input data for the process-driven 
model (e.g. EPANET), thus enabling to directly assess the impact of pump replacement with a 
different pump type on the energetic well field performance. 
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Figure 42 Pump catalogue database (MS ACCESS): characteristics of 3270 pump aggregates (i.e. pump models with 
different number of stages) from 10 different manufacturers. The user can filter pumps based on pumping 
rate, total dynamic head at the best efficiency pump, pump size or tolerance class (top panel). After 
selecting pump technical details on the pump aggregate, its motor (e.g. meta-information if VSD usage is 
possible) as well as pump, global efficiency and net pressure suction head curves are available 
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6.2 Further research & development needs 

Testing the methodology developed in OPTIWELLS-2 for minimising the well field’s specific 
energy demand was limited to three small to medium sized well field sites ranging from 6 to 18 
submersible pumps. However, the methodology should be also scalable, i.e. applicable for larger 
well field sites without being too expensive. Currently this is not possible, because important 
parameters required for assessing the in-situ pump characteristics (pumping rate, pressure head 
and power demand of pump, water level in well) are typically not logged by the operators with a 
sufficient temporal resolution (ideally: at least twice as high as pump switching frequency). To 
overcome this data shortage, time-consuming pump audits were required, but these provide 
only a snapshot that in addition can be fast outdated (for example if that the pumps are 
renewed).  

Thus, future research in the field of energetic well field optimisation should focus on:  

- Identification (or equipment) of a bigger well field with data loggers for continuous 
measurement of at least two operational parameters for each pump (volume, power 
demand per pump) and for the whole well field with high temporal resolution and 

- Testing of the data-driven approach for this (large) well field, because it can be easier 
automatized as it requires less data (e.g. no pressure head or well drawdown), less 
technical steps (e.g. pipe network model setup and calibration) and thus will likely 
provide more robust predictions compared to a process-driven approach. These features 
make the data-driven approach very suitable for being integrated in the operator’s real-
time information system, thus enabling real-time forecasts and feedback (e.g. 
identification of malfunctions like phase shifted connected pumps) the operator on the 
energetic performance of the well field. 
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