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Abstract 

The adoption of decision support tools for the definition of cost-effective strategies is 
seen to gain more importance in the coming years. This development is due for one part 
to the general degradation of the existing systems and for the other part to changes into 
the regulations and demands for more transparency in decision-making (Ana and 
Bauwens, 2007). A key element of decision support systems is the ability to assess and 
predict the remaining life of the assets (Marlow et al., 2009). For this purpose, 
deterioration models have been developed to understand and describe the sewer aging 
based on available CCTV inspections and a list of factors that influence the deterioration.  

This report first describes the potential sewer deterioration factors and analyzes a panel 
of literature case studies regarding the relevance of each factor on sewer deterioration. 
Results are hardly directly comparable, because of the different construction practices, 
historical backgrounds and environmental conditions of the networks investigated. 
However, some trends regarding the most significant factors may be identified. In most 
studies, the construction year and the material seem to be the most relevant factor to 
explain sewer aging. Pipe size, depth, location and sewer function show generally a 
medium significance on sewer deterioration. Pipe slope was found to have a low 
significance for the structural deterioration, but a high relevance on the hydraulic 
deterioration. The effect of other factors as pipe shape, pipe length, soil type, sewer 
bedding, presence of trees, installation method, standard of workmanship, joint type, and 
ground water level have been highlighted but rarely or never investigated.  

On a second step, this report presents three main approaches for sewer deterioration 
modeling: deterministic, statistical and artificial intelligence based models. The models 
can be further categorized into pipe group and pipe level models (Ana and Bauwens, 
2010). Pipe group models (e.g. Cohort survival or Markov) can be used to predict the 
condition of a group of sewers or cohorts and are useful to support strategic asset 
management, i.e. the definition of long term strategies and budget requirements. These 
models enable to evaluate the efficiency of several scenarios at the network scale. Pipe 
level models (e.g. regression, discriminant analysis, neural networks) can be used to 
simulate the condition of each single pipe. They may be useful to set priorities and justify 
asset management operations. Pipe level models are tools that can support the utilities 
in the short and mid-term planning and determine at a finer resolution how, when, and 
where to rehabilitate sewers. 

Literature results indicate that cohort survival and Markov models are two useful 
approaches for modeling the degradation of pipe groups. However, the quality of 
prediction of these models depends highly on the availability of a large amount of 
inspection data. Extensive datasets are required to create representative sewer groups 
(cohorts) with sufficient inspected sewers in each condition state. Regression and 
Discriminant Analysis were tested on several case studies but showed pretty low 
prediction performances. Three main reasons could be (i) the non-validity of model 
assumptions, (ii) the biased distribution of the datasets in terms of number of samples for 
each condition state and (iii) the lack of data for important deterioration factors. Neural 
networks have proven to be successful tools for the prediction of the deterioration of 
individual pipes. However, they require (i) relatively complex and time-consuming 
training processes and (ii) extensive datasets of CCTV inspection and deterioration 
factors.  

Only very few case studies intended to evaluate the quality of prediction of these 
deterioration models. Furthermore, validation results are often contradictory and hardly 
comparable since (i) the data available for model calibration differ (percentage of CCTV 
available, type of deterioration factors available) and (ii) the metrics of the methodologies 
used to assess the quality of prediction differ. Thus, there is still no clear conclusion 
about the best modeling approach depending on the modeling purpose (pipe group or 
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pipe level). There is also no clear conclusion regarding the quality of prediction that can 
be reached since in most case studies only a few percentages of CCTV data were 
available and many data regarding potential deterioration factors were missing. Further 
research work is needed in order to 

 Identify the most appropriate modeling approach depending on the modeling 
purpose 

 Understand the influence of CCTV data availability on the modeling results 

 Analyze the influence of input data uncertainty (CCTV and deterioration factors) 
on the modeling processes 

 Find out the optimum input data requirement (availability of CCTV data and 
deterioration factors) for model calibration. 
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Introduction 

Asset management is an increasing concern for wastewater utilities and municipalities.  
Recent infrastructure studies underline the general deterioration of sewer systems and the 
risk reversing public health, environment and increasing costs (ASCE, 2009). Aging pipes 
have not been inspected, replaced or rehabilitated rapidly enough to prevent sewer 
deterioration and increasing system failures (Tuccillo et al., 2010). In the last 30 years, most 
municipalities have invested in sewer system expansion and treatment plant upgrade but a 
relatively small component has been allocated to the improvement of sewer system 
conditions.  

Only a part of the funds needed to upgrade the condition of sewer systems will be generated 
through increases of municipal taxes and user fees (Allouche et al., 2002). Another strong 
effort will be required for the reduction of overall costs, through the use of decision support 
systems for the definition of cost-effective rehabilitation plans and the optimization of 
inspection and maintenance programs. A key element of decision support systems is the 
ability to assess and predict the remaining life of the assets (Marlow et al., 2009). For this 
purpose, deterioration models have been developed by research and water utilities  

(i) to simulate the actual condition of non-inspected (or non-recently inspected) 
sewers. The actual condition of the entire sewer network can be predicted, 
although only condition data about a part of the sewer network are available. 

(ii) to forecast the future degradation of the network (Figure 1). 
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Figure 1: From CCTV inspection programs to sewer deterioration modeling. The condition evaluation of the 
available CCTV reports gives only a partial knowledge about the system condition. These condition 
data are used as input data to calibrate deterioration models and perform new predictions. 
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Input data to deterioration models are generally sewer condition data (condition evaluation 
from CCTV reports) and additional information about so-called deterioration factors that 
influence sewer degradation (pipe construction, operational and environmental factors).  

Modeling results can be useful (i) to support the definition of long term strategies and assess 
budget requirements or (ii) to determine at a finer resolution how, when, and where to 
rehabilitate sewers.  

Several modeling approaches are now available but not commonly used by sewer operators 
and municipalities to support strategies. Indeed, their ability to model sewer deterioration with 
an acceptable accuracy is still to be demonstrated. This step is crucial for the further 
development of deterioration models since their acceptance among water utilities depends 
mainly on the availability of proof of reliable forecasts (Ana and Bauwens, 2010). Since 
decision makers may use information from model results to plan or justify public investments, 
they are highly concerned by the accuracy of the model predictions (Sargent, 1999). Thus, 
the validation of deterioration models is still a primary task to be done in order to (i) build the 
confidence of end-users (utilities, municipalities) regarding models use and (ii) demonstrate 
the benefits of using modeling approaches to set asset management strategies.  

This report first describes the list of potential sewer deterioration factors and analyzes 
several literature case studies regarding the relevance of each factor on sewer deterioration 
(Chapter 1). On a second step, three main approaches to sewer deterioration modeling are 
introduced: deterministic models, statistical models and artificial intelligence based models 
(Chapter 2.1). Lastly, this report summarizes available results concerning the application of 
deterioration models on full scale case studies regarding their reliability and the quality of 
prediction (Chapter 2.2).  
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Chapter 1 Survey of factors affecting sewer deterioration 

The deterioration process of sewers can be divided into structural deterioration and hydraulic 
deterioration (WRc, 1986). The structural deterioration is characterized by structural defects 
(e.g. cracks, fractures) that may lead to structural failure such as a pipe collapse (Tran, 
2007). The hydraulic deterioration is observed through hydraulic defects (e.g. intrusion of 
tree roots and deposits) that reduce the transport capacity and may lead to hydraulic failures 
such as blockage and overflow. A defect can have consequences on both structural and 
hydraulic degradation (e.g. intrusion of tree roots). In addition, the overall structural condition 
directly affects the sewer flow capacity since structurally deteriorated pipes with cracks and 
breaks have a rougher inner surface that increases the risk of debris accumulation (Chughtai 
and Zayed, 2008).  

Generally, pipes deteriorate with age; however, deterioration rates can vary significantly 
between pipes depending on pipe construction, operational and environmental factors. 
Therefore, an older pipe will not necessarily be in a worse state than a newer pipe.  

Since numerous factors affect the sewer deterioration, it is obvious that pipes of different 
types and characteristics have different deterioration behaviors. Therefore, these factors are 
considered as variables or covariates in the development and calibration of sewer 
deterioration models (Chapter 2). The deterioration factors are not used to explain the 
causes of deterioration but rather to find correlations with sewer deterioration and identify the 
circumstances in which a rapid degradation may occur.  

A large number of potential deterioration factors have been presented in the literature 
(Davies et al., 2001). They can be divided in three groups:  

 Pipe construction factors: e.g. pipe characteristics (age, material, etc.) and further 
construction factors (sewer depth, sewer bedding, etc.). 

 Operational factors: e.g. sewer maintenance practices. 

 Environmental factors: e.g.  ground water level, surface load, soil and backfill type. 

If data regarding pipe construction factors are typically available in the operators databases 
(e.g. material, age, etc.), operational and environmental factors are often missing. Some data 
are rarely collected by sewer operators since they are not directly related to their operational 
activity (e.g. surface load and traffic). On the other hand, some data (e.g. traffic intensity or 
soil type) may be already available at other municipal services (e.g. urban planning or road 
construction).  

The identification of the most important influencing factors is primary for following reasons: 

 to decrease the number of factors required to calibrate deterioration models. Due to 
the high costs associated with data collection, the comprehensive collection of data 
regarding all potential deterioration factors is not cost effective. Correlation between 
factors can reduce the number of explanatory variables to consider for model 
calibration. The same quality of prediction can be reached using less input data and 
thus reducing data collection costs. 

 to ensure the reliability of the prediction of deterioration models. High prediction quality 
can be achieved only if data regarding most important deterioration factors are 
available. 

Numerous authors analyzed the influence of deterioration factors on sewer condition 
(Ahmadi et al., 2013; Ana, 2009; Baur and Herz, 2002; Chughtai and Zayed, 2008; Davies et 
al., 2001; Müller, 2006; O’Reilly et al., 1989; Tran, 2007). Table 1 summarizes the findings of 
different case studies that investigated the influence of factors on sewer deterioration using 
statistical methods.  
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Table 1: Significance level of deterioration factors on sewer deterioration according to the presented case studies 

  Reference 

 

 

Factors 

Structural deterioration Hydraulic 

Baur and 
Herz 

(2002) 

Müller et 
al.  

(2002) 

O’Reilly 
et al. 

(1989) 

Chughtai 
and Zayed 

(2008) 

Ana et 
al. 

(2008) 

Tran 
(2007) 

Tran 
(2007) 

Location of 
the case 
study 

Dresden, 
Germany  

4 cities in 
Germany 

Southern 
water 

Authority
UK 

Pierrefonds 
& Niagara 

Falls, 
Canada 

Leuven, 
Belgium 

City of Greater 
Dandenong, 

Australia 

Inspected 
sewer 
length 

64 km  
4.6 % of 
pipe pop. 

500 km, 
280 km, 
100 km, 
500 km  

180 km - 
90 km 
27% of 

pipe pop. 

417 data points  
2.2% of pipe 
population 

Construction 
year  

High High High - Medium Low High  

Material Medium Low High Medium High - - 

Pipe size Medium Medium Medium - Low High High 

Pipe shape High - - - Low - - 

Pipe depth 
- High Medium - Low Low 

Unde-
cided 

Pipe length - - - - High - - 

Pipe slope Medium - - Low Low Low High 

Sewer 
bedding 

- - - High - - - 

Sewer 
function 

Medium High Medium - - - - 

Location/ 
Traffic 

Low Low Medium Medium (Low) High High 

Tree-count 
- - - - - 

Unde-
cided 

Low 

Soil type 
- High High - - 

Unde-
cided 

Unde-
cided 

 

The influence of only few factors has been evaluated in the case studies depending on the 
data available in the operator databases. Furthermore, results are hardly directly 
comparable, because of the different construction practices, local conditions and data 
availability. However, some trends regarding the most significant factors may be identified.  

 The construction year has generally a very high influence on the structural and 
hydraulic deterioration processes. It indicates the sewer age and represents the historical 
background of the investigated area (e.g. standard of workmanship, material quality).  

 The types of sewer material (concrete, clay, etc.) differ in each case study, but have 
generally a high relevance on sewer deterioration (Baur and Herz, 2002; Müller and 
Dohmann, 2002; Ana et al., 2008).  
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 Pipe size, depth, sewer function and location of the pipe show a medium significance 
on sewer deterioration. These factors can be easily considered in deterioration modeling 
since data are usually available.  

 Pipe slope was found to have a low significance for the structural deterioration but a high 
relevance on the hydraulic deterioration.  

 The effect of pipe shape and length was rarely investigated, although data of these 
factors are usually available. Further research is necessary to evaluate their influence on 
sewer deterioration. 

 The factors soil type, sewer bedding and presence of trees have been rarely 
investigated since few data are available in the network databases. Further studies are 
needed since they are often considered to have a major influence on structural and 
hydraulic deterioration.  

 As far as we know, other potential significant factors, such as installation method, 
standard of workmanship, joint type, and ground water level have not been 
investigated quantitatively. 

The next paragraphs present in detail the potential deterioration factors. The results of 
specific studies are shown in order to state the influence of different factors more precisely. 

1.1 Description of factors influencing structural conditions 

1.1.1 Pipe construction features 

Construction period and age 

The construction year affects the sewer condition since it represents the sewer age and the 
quality of the construction work. Since the origin of sewer systems in the 19th century, sewers 
have been installed at different periods using available standards and technologies. The 
state of the art of sewer construction and the economic situation (e.g. years of war, economic 
crisis, high construction activities) affects the quality of construction work and material used.  

Müller and Dohmann (2002) pointed out that the defect density is particularly high for sewer 
pipes constructed during the Second World War in Germany due to the lack of qualified 
personnel. According to Baur and Herz (2002), pipes constructed during socialist periods in 
East Germany have higher rehabilitation needs due to the use of poor material quality and 
insufficient bedding conditions. Furthermore, the quality of construction work may decrease 
during periods of intensive construction activity. Davies et al. (2001) identifies that sewer 
pipes constructed between 1918 and 1939 (interwar period) in the UK have the highest 
defect density and pipes constructed from 25 years after the Second World War forward 
have a decreased deterioration rate due to the use of improved technologies.  

Pipe Material 

Material types used in the construction of sewer pipes affect their reaction to the 
environmental factors (Salman, 2010). The distribution of main sewer material differs 
between countries and cities. 

Concrete pipes are commonly in use for sewer pipes due to their high abrasion resistance, 
strength and cost (Ana, 2009). Davies et al. (2001) state that the primary cause of concrete 
sewer failure is the corrosive action of hydrogen sulphide. Sulphide-reducing bacteria reduce 
sulphates contained in sewage under anaerobic conditions and form dissolved hydrogen 
sulphide (H2S). When H2S is being oxidised to sulphuric acid (H2SO4), it may attack alkaline 
materials like concrete surfaces and asbestos cement.  

Clay pipes are highly resistant to acids and are therefore suitable for sanitary pipes with high 
acid concentration. Disadvantages of clay pipes are their restriction to circular shapes, their 
limited pipe length and their brittleness so they are prone to fractures (Ana, 2009). 



 

12 
 

Plastic pipes, like PVC pipes, are chemically inert to acidic and alkaline wastes and have 
watertight joints. However, PVC pipes can undergo excessive deformations under loading, 
especially when installed improperly or when transporting high temperature wastes.  

Ana (2009) found out that concrete pipes are more durable than brick pipes. O´Reilly et al. 
(1989) investigated that vitrified clay pipes are found to be more deteriorated than concrete 
pipe since clay ware is the oldest pipe material used in the UK. Salman (2010) summarizes 
advantages and disadvantages of common material types like asbestos cement, cast iron, 
concrete, vitrified clay and plastic materials. 

Pipe size 

Literature results about the effect of pipe size on the deterioration process are contradictory. 
Davies et al. (2001) suggested that larger pipes have a lower risk of deterioration, because 
they are laid more carefully due to their bulk and weight. On the other hand, O'Reilly et al. 
(1989) analyzed 180 km sewer length and found that longitudinal cracks and fractures 
increase with diameter: small pipes (300 mm in diameter and smaller) have smaller moments 
of inertia and therefore are less resistant to bedding movements. Some studies prove the 
assumption of a decreased deterioration rate of small pipes (Ana et al., 2008; Baur and Herz, 
2002; Müller and Dohmann, 2002).  

Pipe shape 

Only few studies investigated the deterioration behaviors of several pipe shapes (circular, 
egg shaped, U-shaped, box-shaped, etc.). Modica (2007) investigated the history of the 
sewer network of Newark (USA). He indicates that circular brick sewers show the highest 
structural performance. Baur and Herz (2002) investigated the sewer system in Dresden 
(Germany), which is mainly built of concrete and vitrified clay, and found out that egg shaped 
sewers deteriorated significantly slower compared to circular sewers.  

Sewer depth 

Several authors studied the influence of sewer depth on sewer condition state. (O’Reilly et 
al., 1989) describe that sewers have a decreasing defect rate up to 5.5 m below the ground 
level due to the decreasing influence of surface factors such as traffic. Shallow sewers at 
depth of less than 2 meters are significantly affected by the surface and therefore may have 
higher than average failure rates. Kawabata et al. (2003) also states that sewer pipes at a 
depth of 2 meters receive much lower earth pressures due to traffic loads than if pipes are 
laid in a depth of one meter. Furthermore, the effect of seasonal moisture variations in the 
soil surrounding shallow sewers may affect the deterioration process significantly (Davies et 
al., 2001). On the other hand, very deep sewers (below 5.5 m) are suggested to have an 
increasing defect rate with depth due to the increasing effect of soil pressure (Ana, 2009). 

Sewer length 

Ana et al. (2008) proves the assumption that long sewers typically deteriorate faster, 
because they have more areas of possible failure, like pipe joints. Furthermore, longer 
sewers have higher risk of settlement, which could increase blockages and corrosion. 

Sewer slope 

Flat slopes in sewers generally result in a low velocity of the transporting medium. The longer 
the wastewater stays in the sewer the more likely is the generation of hydrogen sulphide gas. 
Additionally, there is a higher risk of sediment deposition and clogging in sewers with flat 
slopes (Ana, 2009). On the contrary, pipes with steeper slopes may cause high flow velocity, 
which increases erosion and abrasion rates on the pipe lining (Chughtai and Zayed, 2008). 
Baur and Herz (2002) analyzed the deterioration rates of sewer with different gradients (<1%, 
1-5%, >5%). Results showed that sewers with a medium slope (gradient or 1-5%) deteriorate 
slower than sewers with flat and steep slopes (gradients of <1% and >5%). 
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Installation method 

Two different methods of installing and 
constructing sewers are available: trench and 
tunneling methods. Depending on the 
installation method, the soil-pipe interactions 
and the load resulting on the pipe differ. For 
example, the load and dynamic forces 
transmitted to the pipe can vary by as much as 
a factor of 10 depending on the width of the 
trench (narrow and wide), the pipe shape, size 
and sewer bedding material (Davies et al., 
2001). Figure 2 shows an example of 
settlement due to the relative movement of the 
soil over the pipe. The bedding material is filled 
in the trench after installing the pipe. In general, 
the natural ground will settle slightly, the 
bedding material will compress and therefore 
the pipe will settle into its foundation until 
equilibrium is reached.  

Trenchless tunneling methods are rather recent technologies so only a marginal amount of 
such sewers exist today. No study has been found that investigates the influence of the 
installation methods and characteristics on sewer deterioration. 

Standard of workmanship 

The standard of workmanship is often assumed to be a critical deterioration factor (Ana, 
2009; Davies et al., 2001). Poor construction practices are considered to be the primary 
cause of sewer failures like structural defects and leakage at joints. It includes not removing 
rocks and tree roots from trenches, laying pipes to gradients other than design gradients, 
improper backfilling and consolidation and laying pipes sockets on bricks or blocks. 
Furthermore, construction methods can lead to the formation of voids around the pipe. For 
example, timbers left in trenches that decay with time and sub drains that have not been 
removed or adequately refilled after construction works lead to the formation of voids. The 
quantitative influence of the standard of workmanship has not been directly investigated in 
case studies. However, it may be assumed that it is related to the construction period and 
thus to the available standards and technologies.  

Sewer bedding material 

Sewer pipes require proper beddings as a structural support to ensure their long-time 
structural performance. The chance of pipe failure increases with improper bedding 
conditions. This includes the choice of the type of the bedding material as well as the proper 
installation (filling and compression). In the UK, the British Standard BS EN 1295-1 (1998) 
describes six bedding classes for rigid sewer pipes (D, N, F, B, S and A) with bedding class 
B – single size granular cradle type – as the most common used class in the UK (Davies et 
al., 2001). According to BS EN 1295-1 (1998), a bedding factor can be assigned to each 
bedding class. It determines the effectiveness of load and pressure distribution of the 
bedding materials around the pipe. Angular granular bedding materials were investigated to 
have a higher bedding factor than rounded granular due to their natural stability that resists 
displacements. In addition, the grain size has a high influence on the exfiltration rate, 
because larger particles allow a higher flow rate. Chughtai and Zayed (2008) compared the 
structural deterioration of concrete sewers in respect to the bedding class. They found out 
that concrete pipes deteriorate faster if they are laid in well-compacted backfill than in well-
compacted granular material. This significant difference in the deterioration rate is suggested 
to be due to a higher vulnerability of displacements in weaker bedding materials. 

Figure 2: Settlement of bedding materials after the 
pipe installation according to the 
trench method (from Davies et al., 
2001) 
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Joint type and material 

Sewer joins aim to ensure watertightness and resistance against root intrusions. Joint types 
have changed over the past 100 years due to technical development: from clay puddle 
(1880’s) over lime and mortar (early 1900s) and cement mortar (mid 1900s) to flexible joints 
(1950s) (Ana, 2009). Flexible joints showed a degree of flexibility in line and level and their 
use is now almost universal. The watertightness of flexible joints is dependent of the stress 
within the joint ring. The stress must be distributed equally within the ring and therefore 
correct sized rings and a concentrically connection is essential (Davies et al., 2001).  

1.1.2 Operational factors 

Sewer function 

Sewer pipes can be classified into sewers that transport sanitary only sewage, only 
stormwater or combined sewers that transport both. The quality of the wastewater 
transported through the pipe varies largely: from weak domestic sewage diluted with 
stormwater and groundwater infiltration, to chemically strong undiluted sewage from 
commercial establishments. Strong and aggressive sewage leads to material degradation 
such as internal corrosion and erosion. Internal corrosion is dependent on the sewage 
properties such as pH and sulphate concentration, whereas pipe erosion occurs with a high 
sewage flow velocity and presence of suspended solids (Tran, 2007). O’Reilly et al. (1989) 
found out higher defect rates for combined and stormwater sewers than for sanitary sewers. 
The explanation could be that combined and stormwater sewers are constructed shallower 
than sanitary sewers (increased surface loads) and have larger fluctuations in flow.  

Sewer maintenance 

Appropriate maintenance strategies, like sediment removal, sewer cleaning and root cutting, 
generally increase the service life of sewers. Nevertheless, cleaning techniques may 
accelerate sewer deterioration (Davies et al., 2001). For example, sewer-flushing techniques 
used to clean sewer sediments and clear blockages may cause damages to sewer materials 
due to high water pressures.  

1.1.3 Environmental factors 

Location: surface load and traffic 

Land use and traffic above the sewer pipe affect the magnitude of surface loading carried to 
the pipe. Magnitude and frequency of surface loads vary in time and are difficult to measure 
or estimate. Loads may be classified into large one-time events (e.g. surface construction, in-
ground utility construction, earthquakes, and landslide) and small cyclic events with hourly, 
daily or seasonal frequency (e.g. bus stops, traffic, maintenance activities) (Marlow et al., 
2009). 

The construction and structural design of new sewers require the consideration of estimated 
loads (BS EN 1295-1, 1998). Therefore, sewers under main roads may have higher 
construction standards and will not automatically deteriorate faster than sewers under light 
traffic roads although they have to carry greater loads. According to Müller and Dohmann 
(2002), the quality of construction work is rather the determining factor. Furthermore, loads 
transmitted to the pipe do not only depend on the traffic intensity, but also on other factors 
such as the structure of the pavement, the sewer depth and the pipe bedding. 

O’Reilly et al. (1989) investigated the defect rates of sewers under different locations 
(different road types, field, garden, footpath and premises) and found out that sewer under 
roads with varying traffic intensities have a similar defect rates. However, sewers under 
gardens show a much higher defect rate than under roads, probably due to disturbance 
during houses construction works.  
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Ground water level 

If the natural groundwater level lies above the pipe, groundwater may infiltrate through pipe 
defects. Water flowing through defects washes out soil particles and causes ground loss. 
This leads to soil density losses or to the formation of voids and therefore, to a lack of soil 
supporting the pipe (Davies et al., 2001). Roger (1986) investigated the effect of different 
groundwater levels on soil loss for various soil types.  

Presence of trees 

Roots of trees close to sewers may enter the pipes through defects (cracks, open joints or 
fissures) as they search for moisture. On the one hand, roots can open up and worsen the 
pipe defects, and on the other hand, the growth of roots inside the pipe affects the sewage 
transport. Further growth of roots inside the sewer exerts the pressure on the pipe that is 
sufficient to break the pipe (Ana, 2009). Tran (2007) analyzed the effect of tree-counts on 
sewer deterioration. The tree-counts were found to have a low to medium effect on structural 
deterioration. It is suggested that factors such as tree age, height and tree type may be more 
appropriate. 

Soil type 

The soil type may influence the risk of ground loss and the stability of the sewer. As 
described above, the loss of the surrounding soil occurs in the presence of water 
(groundwater, rainwater) in combination with pipe defects (e.g. cracks, fractures). The type of 
soil surrounding the sewer determines largely the degree of ground loss: fine, cohesionless 
soils such as silt and fine sand flow much faster with the water than coarse soils (e.g. gravel) 
and cohesive soils (e.g. clay) (Ana, 2009). Swelling of clay soils due to the change of water 
content in the soil imposes forces on the pipe structure. O’Reilly et al. (1989) showed that the 
sewer defect rate was the highest in clay grounds and the lowest in gravel soils. Besides, 
field studies on frost penetration found out that the expansion of soil due to freezing causes 
vertical forces on pipes (Davies et al., 2001).   

1.2 Description of factors influencing hydraulic conditions 

The factors presented above have a potential influence on the structural degradation of 
sewers. With a different magnitude, these factors can also affect the transport capacity of the 
pipes (hydraulic conditions). Some factors may have a low influence on the structural 
degradation of the pipes but a very strong effect on the hydraulic condition (e.g. presence of 
groundwater). 

Hydraulic defects (e.g. deposits) primarily occur in sewers that do not have an adequate pipe 
size and pipe slope for the transportation of the sewage volume. Faulty design increases the 
risk of debris accumulation and blockage. Roots entering the pipe additionally affect the flow 
capacity and are a major factor of sewer pipe blockages (Chughtai and Zayed, 2008). The 
presence of trees and the soil type influence the risk of roots growing into the pipe. 
Furthermore, shallowly buried pipes (pipe depth) are more vulnerable to root intrusions, 
whereas deep sewers are rather affected by the groundwater.  

The groundwater, as it flows through structural pipe defects, carries soil particles and salts 
that cause encrustations and debris (Tran, 2007).  

The pipe location may also affect the type and the level of deposit build-up or debris 
accumulation. Depending on the location (e.g. road, park) and site characteristics (e.g. traffic 
volume, surfaces cover), the sources of natural and anthropogenic suspended solids vary 
significantly (Tran, 2007).  

In addition to the deterioration factors, Chughtai and Zayed (2008) states that the overall 
structural condition directly affects the sewer flow capacity. Structurally deteriorated pipes 
with cracks and breaks have a rougher inner surface that increases the risk of debris 
accumulation.  
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Chapter 2 Sewer deterioration models 

A wide variety of deterioration models has been proposed in the literature to predict the 
deterioration processes based on real-observed sewer conditions and deterioration factors. 
However, the models differ in i) the mathematical description of the deterioration process, ii) 
the data requirements and iii) the mode of calibration (Scheidegger et al., 2011). Existing 
sewer deterioration models can be classified into three basic groups: deterministic models, 
statistical models and artificial intelligence based models (Figure 3).  

 

Figure 3: Overview of the different types of sewer deterioration models.  

Deterministic models evaluate the quantitative relationship between deterioration factors and 
sewer condition using mathematical equations. They assume clear relations between 
deterioration factors and sewer condition and do not account for the uncertainty that is 
associated with asset deterioration and failure (Marlow et al., 2009). Statistical models take 
this uncertainty into account using probability based equations to relate deterioration factors 
to historical data of graded pipe conditions. Artificial intelligence based models are rather 
data-driven than model-driven. Neural Networks predict output from input information in a 
manner that simulates a simplification of the operation of the human central nervous system 
(Marlow et al., 2009). They investigate the mathematical relationships between predictors 
(independent variables, i.e. deterioration factors) and responses (dependent variables, i.e. 
discrete sewer condition classes) by “learning” the deterioration behavior of pipes from 
inspection data. Their structure is built based on the available sample data and is therefore 
considered as data-driven.  

Sewer deterioration models can be further categorized into two main types of models: pipe 
group and pipe level models (Ana and Bauwens, 2010).  

 Pipe group models can be used to predict the condition of a group of sewers or 
“cohorts” and are useful to support strategic asset management, i.e. the definition of 
long term strategies and budget requirements.  

These models enable the evaluation of the efficiency of several scenarios at the 
network scale.  

 Pipe level models can be used to simulate the condition of each single pipe. They 
may be useful to set priorities and justify asset management operations and 
investments.  
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Pipe level models are tools that can support the utilities in the short or mid-term 
planning and determine at a finer resolution how, when, and where a sewer 
replacement is most reasonable. Pipe level models have the advantage that they can 
also be used at the pipe group level by creating groups of sewers. 

Cohort survival models are pipe group models: the deterioration processes are described 
using homogenous sewer pipe groups (i.e. cohorts) sharing similar deterioration factors. 
They do not considerate deterioration factors as covariables. All other models are pipe level 
models and can also be used at the pipe group level. They consider the individual properties 
of pipes as covariates in predicting their individual deterioration (Ana and Bauwens, 2010).  

This chapter presents the main approaches of deterioration modeling proposed in the 
literature and discusses the validation results of these models by comparing the findings of 
the few case studies concerning their reliability. 

2.1 Type of sewer deterioration models 

2.1.1 Deterministic models 

Deterministic models are empirical or mechanistic models based on physical, chemical or 
engineering science knowledge of the phenomenon. Models were developed by 
understanding the physical mechanisms of sewer deterioration processes. Empirical 
deterministic models involve fitting some form of linear or non-linear equation to observations 
of asset failure (Marlow et al., 2009). 

An example of deterministic model is ExtCorr developed within the Care-S project (König, 
2005). The model estimates the external corrosion of concrete pipes by evaluating the soil 
aggressiveness, the soil moisture and the cement quality of the pipe. 

Another example is the WATS model, a deterministic in-sewer process model for the 
simulation of internal corrosion. The model is based on the resolution of non-linear 
differential equations describing microbial and chemical transformation processes of organic 
matter, oxygen, oxidized nitrogen compounds, and sulfurous compounds (Vollersten and 
König, 2005). 

Some single aspects, such as corrosion, can be modeled empirically, but the degradation of 
sewer condition remains a very complex process that is not completely understood and 
depends on a large amount of factors (Schmidt, 2009). Deterministic models are often too 
simplistic to reflect the actual deterioration process and the scarcity of data needed to 
simulate accurately the deterioration mechanisms decreases their applicability (Ana, 2009). 
They usually rely on a number of simplifying assumptions and do not account for the 
uncertainty that is associated with asset deterioration and failure (Marlow et al., 2009). 

2.1.2 Statistical models 

Statistical models describe the sewer condition as a random variable. Models take into 
account the probabilistic nature of the deterioration processes and use historical data to 
provide correlations between deterioration factors and condition data. 

Cohort survival model 

The cohort survival model describes the deterioration process of homogenous sewer pipe 
groups (i.e. cohorts) sharing similar deterioration factors with transition functions. Each 
transition function determines the transition from one condition state into the next worse 
condition state. Transition functions do not integrate deterioration factors as covariables. 
Therefore, the prediction of the deterioration behavior within a cohort (pipe group) is an 
average estimation for all pipes belonging to the group. Cohort survival models cannot be 
used with accuracy to predict the deterioration of each individual pipe but may be useful to 
support strategic asset management, i.e. the definition of long term strategies and budget 
requirements. 
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The cohort model has been investigated in detail by Baur and Herz (2002) in Germany and 
by Hörold (1998) in Norway. The model has been widely applied in Germany. Several tools 
using a cohort survival model are proposed mainly by German consulting offices (e.g. AQUA-
WertMin, DynaStrat, KANEW-Z). In general, these tools aim to predict rehabilitation needs 
and costs for different investment scenarios. They can be used to describe the relationship 
between budget allowance and the resulting development of the sewer network condition. 
More information about available software can be found in DWA (2012). 

Model description 

Sewers pass through different conditions during their service life. The sewer condition is 
evaluated based on CCTV using discrete classification methods (e.g. RERAU, DWA M149-3; 
for more information on classification methods see Kley et al. (2013)). It is assumed that 
sewers survive with some probability a number of years within a particular condition. The 
transition from one into the next condition is described by condition survival curves that are 
also known as transition functions. Transition functions need to be calibrated for each 
defined sewer group (i.e. “cohort”). Information regarding deterioration factors is used to 
create homogeneous cohorts. 

Several distributions (e.g. Weibull, Gompertz, Herz) are suitable to estimate the transition 
functions. The Herz distribution was developed to model the deterioration of water supply 
pipes and is particularly suitable as it models the deterioration process according to the “bath 
tube curve” (Figure 4): after some time of resistance in the best condition state, the failure 
probability starts to increase exponentially up to the median age and then turn into a 
declining curve approaching a finite maximum value (Baur and Herz, 2002). At this last 
stage, the pipe does not deteriorate anymore by getting older.  

 

Figure 4: ‘Bath tube’ curve (from Herz, 1999): graphical description of the deterioration process 

The so called “survival” function of the Herz distribution describes the transition from 
condition i to i+1 (Herz, 1995, 1996): 
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where 

   1iitS  is the fraction of pipes at age t that have survived until condition i or better,  

 a is the aging factor. The larger a is, the smoother is the transition. 

 b is the transition parameter. The larger b is, the faster is the transition  



 

19 
 

 c is the resistance time and determines the age when no further deterioration takes 
place 

Calibration 

The parameters a, b, and c of the Herz survival or transition function can be estimated by 

minimizing R2 that presents the deviation between the calibrated transition function   1iitS  

and the observed fraction of sewers in condition i or better (Baur et al., 2004). The calibration 
of the transition function requires data on sewer installation year, inspection year and 
condition state for a representative sample of sewers of each cohort. 

Prediction 

The transition curves can be used to predict the remaining life of pipes (time needed to reach 
the transition curve toward the worst sewer condition). Figure 5 gives an example of 
calibrated transition functions from a real dataset and presents the forecasting process 
(Hörold, 1998). For a group of sewers of about 50 years and found to be in condition class 3 
following CCTV inspections, the first pipe of the group to reach condition class 5 (worst 
condition) will reach it after 48 years (minimal Remaining Service Life RSL of the group). The 
last pipe of the group to reach condition 5 will reach it after 105 years (maximum RSL of the 
group). The average RSL of the pipe group is 80 years.  

 

Figure 5: Transition functions for a Norwegian network and prediction of the sewers remaining service life (from 
Hörold (1998) cited by Ana (2009)). 

Advantages: The advantage of the cohort survival models lies in its conceptual and 
computational simplicity.  

Limitations: The cohort survival model requires an extensive dataset to create cohorts with 
sufficient inspected sewers in each condition state. The model needs enough condition data 
to create cohorts with similar deterioration characteristics. On the other hand, it needs a 
sufficient amount of inspection data in each condition state to calibrate the transition 
functions. Each cohort must be small enough to be considered homogenous, but large 
enough to provide results that are statistically significant (Kleiner et al., 2007). 

Most of the times, not enough pipes have been inspected for certain sewer types or condition 
states (Ana and Bauwens, 2010). The samples of sewers used to calibrate the transition 
functions are rarely totally random since the operator may focus his inspection strategy on a 
specific type of sewer (e.g. sewers in very poor condition, old sewers, sewer of a specific 
area). Le Gat (2008) suggests correcting model calibration against this bias by introducing 
weights so that the model represents the various conditions in a balanced way. 
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Additionally, the prediction of the remaining service life of individual pipes is prone to high 
errors due to the large variations of lifetimes between individual pipes.  

Markov model 

Markov-chains are a stochastic process that describes the behavior of systems that pass 
through a finite or countable number of possible condition states. It is a random process 
characterized as ‘memoryless’ due to the key assumption that the prediction of a future 
condition only depends on the current condition and is independent of the sequences of 
events that preceded it. At each time step, the system may change its condition state from 
the current to another worse condition or remain in the same condition, according to a given 
probability. 

Markov-chain theory is a widely used methodology for the prediction of the future condition of 
infrastructures such as road pavements, bridges or drinking water networks (Le Gat, 2008). 
Several tools using Markov theory have been developed for sewer systems during the last 15 
years (e.g. STATUS, Gompitz, KANEW-Z). Le Gat (2008) developed the GompitZ model 
within the research project Care-S. The GompitZ algorithm has been integrated in the 
software KANEW-Z proposed by the engineering and software company 3S Consult GmbH 
(3SC). More information about available software can be found in DWA (2012). Furthermore 
Ana (2009), Baik et al. (2006), Mehle et al. (2001), Micevski et al. (2002), Tran (2007), and 
Wirahadikusumah et al. (2001) have demonstrated applications of the Markov model to 
predict sewer pipes structural deterioration. 

Model description 

The transition probabilities are expressed mathematically as m x m matrix Q, where m is the 
number of possible condition states and i = m is defined as the worst condition state. The 
sum of row elements is always 1 and the pipe cannot improve its condition state without 
intervention and rehabilitation activities. To simplify the calculation, it can be assumed that 
each condition state can only transit to the next worse condition state so most parts of the 
matrix are equal to zero (Le Gat, 2008).  

          

 

 

   
 (2) 

where  

 qi(t,t+1) is  the probability that the pipe stays in condition i between time t and t+1 

 1-qi(t,t+1) is the probability that the pipe transits in the next worse condition between 
time t and t+1 

The transition probabilities can be time independent (i.e. homogenous Markov model), or 
time dependent (i.e. non-homogenous Markov model) (Ana and Bauwens, 2010). Non-
homogeneous Markov models are usually used to simulate sewer deterioration since 
transition probabilities depend on the sewer age and older sewers may deteriorate faster 
(Kleiner, 2001). In the case of semi-Markov models, the transition probabilities do not only 
depend on the current condition state of the sewer, but also on the time already spent in the 
current state (Dirksen and Clemens, 2008). It assumes that the time spent in each condition 
state is randomly distributed (Kleiner, 2001). 

Calibration 

The transition probabilities are derived from condition survival functions (e.g. Weibull or 
Gompertz distribution, similar as cohort survival models). Survival functions are calibrated for 
predefined pipe groups sharing the same features (similar to the cohort model, cohorts are 
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created based on available data regarding deterioration factors) and can additionally 
consider deterioration factors as covariables (Le Gat, 2008). In this case, data regarding 
deterioration factors are included in the mathematical definition of the survival functions (see 
Le Gat (2008)). The parameters of the transition functions are estimated by minimizing the 
deviation between the calibrated transition function and the observed sewer condition data. 

Prediction 

Transition probabilities can be used to simulate the expected condition of the sewers in the 
future. The condition state vector p(t) indicates the probability distribution of condition states 
at any time t according to the calibrated survival functions (Figure 6). The probability vector 
p(t+1) at time t+1 can be obtained by multiplying the current condition state vector pT(t) by 
the transition matrix Q(t,t+1). More generally, to obtain the probability distribution at time t+s: 
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Figure 6 gives an example of survival functions calibrated using inspection data from the city 
of Dresden (Germany) and shows the condition state vector at age 100 (Le Gat, 2008). 

 

Figure 6: Gompertz condition survival functions related to a stormwater concrete pipe of the Dresden sewer 
system, Germany, and an example of a state vector at age 100 (from Le Gat (2008)) 

Advantages: Unlike the cohort survival model, Markov models can consider pipe specific 
covariates in the calibration of the transition functions. Therefore, the amount of homogenous 
sewer groups (cohorts) can be reduced, because additional deterioration factors can be 
integrated as parameters in the survival functions.  

In addition, the outcomes of the Markov model are not condition states, but condition 
probabilities that can be implemented in a risk-based approach (Ana and Bauwens, 2010). 
For example, Le Gat (2008) developed a Markov-based approach that enables to rank the 
rehabilitation priorities according to the probability of pipes being in a poor condition. 

Limitations: The calculation of the transition probabilities requires a large amount of 
inspection data representative of each pipe group for different condition states and ages. 
Especially, data of repeated inspection that reflect the condition changes of individual pipes 
over time are often missing (Le Gat, 2008).  
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Logistic regression analysis 

Regression methods can be used to determine the probability of failure of individual pipes. 
The logistic regression is a type of regression analysis used for predicting the outcome of a 
categorical variable (e.g. discrete sewer condition classes). Generally, the outcome is 
defined by two categorical dependent variables (binary logistic regression). The logistic 
regression can also be generalized by allowing more than two discrete outcomes 
(multinominal logistic regression) (Silva et al., 2013).   

Several types of regression have been tested for the prediction of sewer condition. 
Ariaratnam et al. (2001) developed a binary logistic regression for the prediction of the 
likelihood that a sewer is in a deficient state for the sewer network of Edmonton, Canada. 
Salman (2010) applied logistic regressions on inspection data of the city of Cincinnati (USA). 
Chughtai and Zayed (2008) applied multiple regression techniques to develop sewer 
condition models using deterioration factors as predictor variables.  

Model description  

Logistic regression can be considered as a special type of linear regression in which the 
dependent variable is transformed into the logit of the probability of failure (Salman, 2010):  

log (p / 1- p)  = α + β1X1 + β2X2 + …+ βnXn        (4) 

where  

 p is the probability for a pipe to be in a good condition state 

 1-p is the probability for a pipe to be in a failed condition state 

 Xi are the independent variables (e.g. deterioration factors: age, pipe size, depth, etc.) 

 α and βi are the offset and slope of the regression 

Possible multi-colinearities among variables Xi need to be checked (e.g. using the Wald Test) 
in order to exclude irrelevant variables and redundant information. Indeed, if two variables 
are strongly correlated, there is no need to integrate both in the regression. Therefore, the 
model considers only factors that have a significant influence on the sewer condition.  

In order to calibrate the model, the binary outcome is estimated from condition classes based 
on CCTV results: e.g. the worst two conditions classes represent the failed condition state 
and the other condition classes represent sewers in good condition. The parameters α and β 
can be calculated using the maximum likelihood estimation (Salman, 2010) to maximize the 
agreement of the output with observed data.  

Advantages: The logistic regression model is a simple concept, which provides a direct 
prediction of the probability of pipes failure that can be used for risk analysis. Furthermore, 
the regression enables a better understanding of the deterioration process since 
deterioration factors are directly correlated to the sewer condition (Ana and Bauwens, 2010).  

Limitations: The logistic regression model requires a large amount of data about factors 
affecting the sewer deterioration process in order to obtain good estimates of the regression 
coefficients (Ana and Bauwens, 2010). According to (Salman, 2010), the linear regression 
between condition rating and independent variables is not always able to represent the 
complex deterioration processes. 

Multiple discriminant analysis 

The aim of discriminant analysis is to estimate the linear relationship between a single 
categorical dependent variable (i.e. e.g. discrete sewer condition classes) and a set of 
quantitative independent variables (e.g. deterioration factors). The method is similar to the 
logistic regression but differs in the estimation of the coefficients. While the logistic 
regression makes no assumptions on the distribution of the explanatory data, discriminant 
analyses have been developed for normally distributed explanatory variables. Therefore, 
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discriminant analysis is expected to give better results if the normality assumptions are 
fulfilled, but in all other situations logistic regression should be more appropriate (Pohar et 
al., 2004).  

A multiple discriminant analysis was applied by Tran et al. (2006) to model the deterioration 
of stormwater pipes and by Ana (2009) to predict the deterioration of individual pipes of two 
sewer networks (Leuven and Antwerp). 

Model description  

The discriminant analysis uses a set of linear functions of independent variables (e.g. 
deterioration factors) to determine classification functions:  

Li = α + βi1X1 + βi2X2 + …+ βinXn          (5) 

where  

 Li is the classification function where i = 1 to k-1, with k being the number of condition 
classes  

 Xi  are the independent variables (e.g. deterioration factors: age, pipe size, depth, etc.) 

 βij are the classification coefficients that correspondent to n-number of independent 
variables 

 α is the offset 

To describe the methodology, each sample of inspection data can be visualized as a point in 
a n-dimension space. Classification functions Li are new estimated axes in a k-1 dimensional 
space that enables to separate each point into clusters of condition classes. Each condition 
class has a central position (“centroid”) in this new space that can be calculated by taking the 
mean values of each factor. For a new prediction, a point is considered to belong to a 
condition class if its distance to the class centroid is smaller than to the other class centroids. 
Figure 7 shows a classification example with k = 3 condition classes. Therefore it has k-1 = 2 
axes (L1 and L2) that have been created to represent the samples into clusters of condition 
classes. The new prediction is decided to be in condition class 3 as it is very close to its 
centroid. 

L1

L2 Class 1

Class 2

Class 3

Class centroids

New prediction

 

Figure 7: Illustration of a discriminant analysis classification with three condition classes (adapted from Tran 
(2007)). 

The determination of the coefficients βi can be done by maximizing the variance between 
classes. Maximizing this ratio is also called Fisher’s criterion. Just like in the regression 
analysis, the significance of each factor and possible correlations between independent 
variables have to be analyzed in order to exclude irrelevant ones.  

Advantages: The discriminant analysis seems to be a robust methodology to handle output 
of ordinal data and take into account the probabilistic nature of sewer deterioration (Tran, 
2007). Besides, similar to a regression analysis, the method aids the better understanding of 



 

24 
 

the deterioration process by relating the most important factors that influence the 
deterioration process to sewer conditions. 

Limitations: The method requires assumptions on the distribution of the predictor variables 
that could represent drawbacks in its applicability.  

2.1.3 Artificial intelligence models 

Neural networks NN 

Neural networks can be used to predict output data from input data in a manner that 
simulates the operation of the human nervous system. Similar to the human brain, an 
network of artificial neurons is created in which each neuron receives input signals and 
produces output signals. The models structure does not require any assumption and is 
defined by the sample data (data driven). Generally, the models can handle ordinal outputs 
such as condition classes and can simulate non-linear relationships within the deterioration 
process.  

In the case of sewer deterioration modeling, neural networks investigate the mathematical 
relationships between predictors (independent variables, i.e. deterioration factors) and 
responses (dependent variables, i.e. discrete sewer condition classes) by “learning” the 
deterioration behavior of pipes from inspection data. The knowledge from the sample data is 
generalized to predict the condition of new pipes (Tran et al., 2007). 

Khan et al. (2010) designed and evaluated neural networks using the commercially available 
model software “Neuroshell2” (WardSystemsGroup, 1996). Tran et al. (2007) also 
demonstrated the application of neural networks using sample data of the city of Greater 
Dandenong (Australia).  

Model description  

Generally, a neural network is composed of artificial neurons that are connected to each 
other and ranged in different layers. Each connection between neurons has an associated 
weight that is determined by minimizing the error between the predicted output and the 
actual output value using observed data (Salman, 2010). The dataset used to train the 
network contains (i) sewer deterioration factors, which are used as input values and (ii) 
condition states of inspected sewer pipes that represent the outputs of the model. 

Two main neural networks used for deterioration modeling are the back-propagation neural 
networks (BPNN) and the probabilistic neural networks (PNN). The main principles of these 
methodologies are presented below. For more detailed information, refer to Ana (2009), 
Marlow et al. (2009) or Tran (2007). 

 Back propagation neural networks (BPNN) 

The BPNN is a neural network that simulates the sewer degradation using values Xi of 
deterioration factors and calibrated connection weights. The model is basically composed of 
three layers (Figure 8). 

 In the input layer, each node represents a deterioration factor with a value Xi. 

 In the hidden layer, each node receives signals from the input layer. The inputs Xi in 
the previous layer are multiplied by associated connection weights. The connection 
weights are an analogous to the coefficients of statistical models and need to be 
adjusted during the training process. The weighted inputs of each node are summed 
and an output signal is produced using pre-defined mathematical functions (also 
called transfer or activation functions). The number of neurons of the hidden layer is 
identified during the training process. 

 The neurons of the output layer receive signals from the hidden layer and define the 
predicted condition classes. 
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Figure 8: Schematic presentation of the back propagation neural network  BPNN (adapted from Tran et al. (2007)) 

The calibration (referred as training process) of the neural network is achieved by repeatedly 
feeding the model using new examples of input and output data. Optimization algorithms are 
used to adjust the model coefficients (i.e. the connection weights) in order to minimize the 
error between predicted and observed condition classes.  

 Probabilistic neural networks (PNN) 

PNN is a special form of neural network based on Bayesian classification rules. Typically, it 
uses four layers as shown in Figure 9. Each layer is developed using signals from the 
previous layer: 

 The neurons of the input layer represent the values Xi of the deterioration factors.  

 In the pattern layer, each sample used for the training is represented by a node. A 
value is calculated for each node as the product of his input vector X with a weight 
vector. The nodes are grouped in clusters, according to their condition class.  

 In the summation layer, each condition class is represented by a node. The value of 
each node is computed from the values of the pattern layer using an estimation of the 
probability density function (PDF) (for more details see e.g. Ana (2009) or Tran et al. 
(2007)).  

 In the output layer, Bayesian classification rules are carried out to assign a condition 
class. For example, for two condition classes (1 and 2), a sample with a vector of 
deterioration factors X will be classified in condition 1 if   

h1 · f1(X) > h2 · f2(X)          (6) 

where 

 hi is the a priori probability that X belongs to condition class i 

 fi is the probability density function for condition class i 

During the training process, an optimization algorithm is used to adjust the parameters of the 
probability function. The PNN model has a faster calibration process compared to the BPNN, 
because the number of neurons is fixed by the model structure and should not be determined 
using an additional optimizing process. However, PNN models are based on statistical 
techniques that make assumptions on the probability distribution and the model structure.  
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Figure 9: Schematic presentation of the probabilistic neural network PNN (adapted from Ana (2009)) 

Advantages: Neural Network models can automatically detect and reproduce non-linear and 
complex underlying processes by analyzing relationships between input and output data. 
These models can handle scale and ordinal data and are a practical alternative to theoretical 
models if casual relationships are poorly understood (Tran, 2007).  

Limitations: Like all data-driven models, the training of neural network models has a high 
demand on inspection data. Furthermore, the understanding of the trained NN process is 
limited since they fall into the category of ‘black box’ models with hidden underlying 
processes (Tran, 2007).  

Fuzzy set theory  

Fuzzy set theory can be used to predict sewer deterioration using engineering judgment and 
operator experience (Marlow et al., 2009). These models are particularly suited when the 
data are scarce and the information available is expressed in qualitative (linguistic) terms, 
e.g. “poor”, “medium” and “good” condition (Kleiner et al., 2006). 

 

Figure 10: Fuzzy set representation of the condition of a 50 years old pipe (from Kleiner et al. (2006) cited by 
Marlow et al. (2009)) 

Fuzzy models convert qualitative (linguistic) description of deterioration factors (e.g. age, 
defects, condition classes) into fuzzy numbers. Fuzzy numbers refer to a set of possible 
values for a pipe factor. For example, pipe age can be expressed in linguistic terms as new, 
young, medium, old or very old. A given pipe age can be transformed into a fuzzy number as 
a vector A = (μ1, μ2, …, μn) representing the membership to each age period. Figure 10 
shows an example of a fuzzy set A = (0, 0, 0.52, 0.4, 0) from a pipe at age 50. Therefore, the 
pipe is arranged between the age periods medium and old. 
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A set of rules (i.e. weights) can then be used to aggregate fuzzy inputs to one fuzzy output. 
These rules generally include knowledge of the mechanisms of sewer failure and 
consequences of failure and are based on expert opinion.  

Rajani et al. (2006) presented how the condition of an inspected pipe can be classified as a 
fuzzy set. This fuzzy condition classification is done in three steps: 

 Fuzzification of coded defects: coded pipe defects (termed ‘distress indicators, e.g. 
cracks, joint displacements etc.) are translated into fuzzy sets. For each distress 
indicator seven linguistic constants are assigned (excellent, good, adequate, fair, 
poor, bad, failed) according to its specific quantification.  

 Aggregation of distress indicators to categories: a category reflects a specific pipe 
component (e.g. external coating, inner lining, joint). Distress indicators are combined 
to reflect the level of deterioration of each category. The combination is based on 
weighting and the importance of each distress factor according to expert opinion. The 
results are fuzzy sets for each category. 

 Aggregation of categories towards condition rating: expert opinion is used to assign 
relative weightings to categories in order to calculate the fuzzy condition rating of the 
pipe. The result is a 7-element fuzzy set, which represents the membership values 
describing the condition rating from excellent to failed. For example a resulting fuzzy 
set C = (0,0,0,0.40,0.60,0,0) presents a pipe being to 40 % in a fair condition and to 
60 % in a poor condition state. 

Expert Systems 

The Water Environment Research Foundation (WERF) developed the Expert System 
SCRAPS (Sewer Cataloging, Retrieval, and Prioritization System) that assesses the 
probability and consequence of failure of sewer pipes. The methodology can be used to 
prioritize sewer inspections, especially by small utilities where their available data is scarce 
(Merrill et al., 2004). The method is based on the understanding of all variables that may lead 
to sewer failure and facilitates the effective use of available data to support inspection 
strategies.  

The system intents to reproduce the decision-making process of an expert by using 
information stored in a knowledge database. The database has been developed from a 
literature review and from interviews with experts from partner cities. It consists in a set of 
rules that characterize possible pipeline failure situations. The system relates the available 
data concerning sewer characteristics and deterioration factors with the rules defined in the 
knowledge database to compute the probability that a sewer pipeline may be subject to 
failure using Bayesian probability theory. The consequence of failure is also estimated using 
reconstruction costs, land use data and vulnerability data. Finally, the expert system ranks 
the calculated pipe failure and consequence probabilities of the pipes in order to assign the 
need and frequency of inspections.  

The validation of the tool has been performed making comparisons between model results 
and expert evaluation for 12 example pipes in a specific condition. Results indicated that the 
model assessed 75% of the case studies similarly to the utility expert. 

2.1.4 Summary of models advantages and limitations 
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 Cohort Markov 
Logistic 

regression 
Discriminant 

analysis 
Neural 

Networks 

Model level      

Pipe group level X X X X X 

Pipe level  (X) X X X 

Advantage      

Conceptual and computational simplicity +  (+)   

Understanding of deterioration process: direct relation 
between factors and condition states 

  + +  

Calculation of condition probabilities: appropriate for risk-
based approach 

 + +   

Appropriate for non-linear and complex processes     + 

Limitation      

Need for extensive dataset: deterioration factors + CCTV - - - - - 

Assumptions on the distribution of the predictor variables    -  

Binary outcome  

 

 

 

-   

 
“Black box” model: hidden underlying processes     - 

Complex and time-consuming training processes     - 
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2.2 Model validation 

The validation of deterioration models is a key step to build the confidence of end-users 
(utilities, municipalities) regarding the models use. Indeed, deterioration models can be 
successfully used only if decision makers trust the modeling results and are aware of the 
model uncertainties. 

The validation process aims to demonstrate if the model has a satisfactory range of accuracy 
consistent with his intended application (Schlesinger et al., 1979 cited by Sargent, 1999). 
The accuracy of deterioration models can be evaluated by comparing model predictions with 
“real” data, i.e. observed values. Generally, the comparison is done using data that were not 
used during the calibration procedure. This may be done by splitting the available dataset in 
two sets dedicated respectively to calibration and validation (about 60-70 % and 40-30 % 
respectively). The validation is based on historical data so the validation results define the 
quality of prediction of the model within the time period of the data used for the validation. 
However, if inspection data are available over the entire lifespan of the sewers, it can be 
assumed that the future behavior of the network will be estimated with the same prediction 
quality. This assumption can lead to a bias, especially for the prediction of the evolution of 
younger parts of the networks, where inspection data is not available over the entire life span 
of the sewers. 

Only very few case studies intended to evaluate the quality of prediction of models (e.g. Ana, 
2009; Chughtai and Zayed, 2008; Ens, 2012; Khan et al., 2010; Le Gat, 2008; Salman, 2010; 
Tran, 2007). Results are hardly comparable since (i) the data available for model calibration 
differ (percentage of CCTV available, type of deterioration factors available) and (ii) the 
metrics of the methodologies used to assess the quality of prediction differ.  

The next chapters present firstly the validation methodologies used for the validation of 
deterioration models. Secondly, validation results from several applications of deterioration 
models on full-scale case studies are discussed.  

2.2.1 Validation methodologies 

Several methods have been proposed in the literature to assess the quality of prediction of 
models.  

 At the pipe group level, the goodness-of-fit is mostly used to evaluate whether the 
observed number of pipes differs from the predicted number of pipes for each 
condition.  

 At the pipe level, indicators derived from the confusion matrix are mostly used to 
summarize the number of correctly and incorrectly predicted observations. The quality 
of the prediction of regression based models is often assessed using the coefficient of 
determination or the Root Mean Square Error.  

If several methods have already been proposed in the literature, there is still a lack of 
consensus regarding the most adapted methodologies to really demonstrate the ability of 
models to simulate sewer condition. 

Confusion matrix 

When comparing model prediction with observed values, three possible situations can be 
observed: 

 True prediction (TP): when the model correctly predicts the sewer condition (e.g. poor 
or good sewer condition) 

 False negative (FN): when the model incorrectly predicts the sewer condition as a 
positive case (e.g. sewer in poor condition predicted as being in good condition) 
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 False positive (FP): when the model incorrectly predicts the sewer condition as a 
negative case (e.g. sewer in good condition predicted as being in bad condition) 

False negative predictions are particularly critical since they lead to an overestimation of the 
sewer condition: costs associated to failed or collapsed sewers are much higher than 
inspection costs to verify the condition state of a false positive sewer (Tran, 2007). 

The confusion matrix summarizes the number of correctly and incorrectly predicted 
observations. The confusion matrix enables to assess the three possible situations described 
above. Table 2 shows an example of confusion matrix with three condition classes by 
comparing the predicted condition states with observed condition states. The same matrix 
can be done for n condition classes, depending on the number of grades. 

Table 2: Example of confusion matrix for model validation with three condition classes 

 
Observed condition 

Total 
1 (good) 2 (fair) 3 (poor) 

Predicted 
condition 

1 (good) TP11 FN12 FN13 P1 

2 (fair) FP21 TP22 FN23 P2 

3 (poor) FP31 FP32 TP33 P3 

Total O1 O2 O3  

 

The total model efficiency Etot can be calculated as the ratio of correct predicted values on 
total observed values: 

321

332211

OOO

TPTPTP
Etot




           (7) 

The efficiency Ej of the prediction of each condition class j can be calculated as: 

j

ij

j
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E              (8) 

The false Negative rate FNR can be calculated for each condition class j as: 
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            (9) 

The indicators of the confusion matrix are useful to evaluate the quality of prediction of pipe 
level models, since prediction results are available for each sewer. However, the confusion 
matrix cannot be used at the pipe group level. 

Goodness-of-fit 

The goodness-of-fit test is a statistical test used to determine whether the observed number 
of pipes differs from the predicted number of pipes for each condition. The Pearson chi-
squared test (χ2) is a well-known goodness-of-fit test based on a null hypothesis that the 
observed frequency is matched with the estimated (or predicted) frequency (Tran, 2007). The 
chi-square is calculated using: 
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where nOi is the observed number of pipes in condition i, and nPi is the predicted number of 
pipes in condition i. 
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The chi-square value can be used to calculate the p-value considering the number of degree 
of freedom. The null hypothesis is rejected if χ2 is higher than the critical χ2

0.05,2 (95% 
confidence level and 3-1=2 degree of freedom). It means that the predicted number of pipes 
differs significantly from the observed number of pipes.  

Coefficient of determination 

The coefficient of determination R2 is a widely used statistical parameter that indicates the 
degree up to which a model is able to capture the variability of the observed data (Khan et 
al., 2010).  

Root Mean Square Error 

The Root Mean Square Error can be used to measure the difference between predicted and 
observed values. 

 



n

i

ii PO
n

RMSE
1

1
          (11) 

with Oi  = observed value, Pi  = predicted value, and n = number of observed value. 

Average Invalidity and Validity Percents 

The average invalidity and validity percents (AIP and AVP) are used by Chughtai and Zayed 
(2008) and Khan et al. (2010) to evaluate the quality of prediction. An AIP value close to “0” 
means there is a negligible element of error in the model performance. An AVP value close 
to “0” implies that the model does not simulate the observed values accurately. 
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AIPAVP 1            (13) 

2.2.2 Validation results in international case studies 

Case studies in Belgium 

Ana (2009) applied several deterioration models (cohort survival, semi-Markov, logistic 
regression, Multiple Discriminant Analysis MDA and Probabilistic Neural Network PNN) on 
sewer and inspection data of the city of Leuven and Antwerp, Belgium. For the city of 
Leuven, the models were applied using 1255 samples equivalent to 50 km of sewers (total 
sewer length is 400km): 1000 samples were used for calibration and 255 for validation. For 
the city of Antwerp, 1539 samples were available with all data, i.e. 63 km of sewers. The 
structural condition of CCTV samples has been evaluated using the Dutch classification 
methodology (NEN3399, 1992). The following deterioration factors were considered for 
model calibration: sewer age, material, function, shape, size, depth, length, slope, and traffic 
intensity (high, medium, low). 

The models used are divided into pipe group (cohort survival, semi-Markov) and pipe-level 
models (logistic regression, Multiple Discriminant Analysis MDA and Probabilistic Neuronal 
Network PNN). Pipe group models are evaluated using the chi-square goodness-of-fit 
whereas pipe level models are evaluated using an indicator from the confusion matrix: the 
total model efficiency Etot. Pipe group models cannot be evaluated using the confusion matrix 
since results are not available for each sewer but for groups of sewers. Results are shown in 
Table 3 for the Leuven network but are similar for the Antwerp network. 

For the pipe group models, the quality of prediction has been evaluated using the chi-square 
statistic χ2. The cohort survival model seems appropriate to predict the sewer deterioration 
with a 95% significance level. On the other hand, the χ2 value for the semi-Markov model 
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shows insufficient prediction quality due to an overestimation of the deterioration. The cohort 
survival model seems to be the most reliable pipe group model for this case study. 

For the pipe-level models, the efficiency has been calculated from the confusion matrices. 
The logistic regression and the PNN show good overall prediction quality. However, it has 
been shown that they fail to predict sewers in condition 1 and 2 (poor condition) accurately 
and are rather able to predict the condition of sewers in good condition states (for details see 
Ana (2009)). It is assumed that the models show a low prediction power for sewers in bad 
conditions because only few data of sewer in bad conditions were available. Furthermore, 
these models may produce absurd predictions such as sewer improving in condition, as they 
get older. 

Table 3: Evaluations of the prediction quality of the models tested in Leuven (adapted from Ana (2009)) 

Deterioration models chi-square values χ2  (< χ2
0.05,2 = 5.99) 

Calibration dataset Validation dataset 

Cohort model 1.4 1.3 

Markov model 330 82 

 

Deterioration models Total model efficiency Etot (%) 

Calibration dataset Validation dataset 

Logistic regression 90 90 

MDA 60 60 

PNN 95 80 

 

Case studies in Australia 

Tran (2007) applied several deterioration models in the City of Greater Dandenong in Victoria 
(Australia). A dataset of 417 concrete pipes was available among the entire population of 
stormwater pipes (3.4% of the total length). The dataset was randomly spitted in a calibration 
(75%) and a validation (25%) dataset. The structural condition of CCTV samples has been 
evaluated using the Sewer Inspection Reporting Code of Australia (WSAA, 2002). The 
following deterioration factors were considered for model calibration: sewer age, shape, size, 
depth, slope, soil type, pipe location (e.g. under road or under nature strip), tree count, and 
hydraulic condition (good, fair or poor). 

The performance of several models has been tested and compared to identify the most 
reliable model between Markov model, Multiple discriminant analysis (MDA), Ordered probit 
(type of ordinal regression, not described here), Back Propagation Neural network (BPNN) 
and Probabilistic neural network (PNN). 

The Markov model is used to predict the structural deterioration at the pipe-group level and 
can be evaluated using the Pearson chi-square statistic. The remaining four models can be 
used at the pipe group and pipe level and are evaluated using the chi-square and the total 
model efficiency Etot from the confusion matrix. 

For the pipe group models, results indicate that the Markov model, the BPNN and PNN 
passed the goodness-of-fit test (Table 4) and thus are suitable to predict sewer deterioration. 
The Markov model has the lowest chi-square value and hence shows the best performance 
in predicting sewer deterioration in this case study.  
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Table 4: Chi-square values for the application of five deterioration models in the City of Greater Dandenong 
(adapted from Tran (2007)) 

Deterioration models chi-square values χ2  (< χ2
0.05,2 = 5.99) 

Calibration dataset Validation dataset 

Markov model 0.22 0.34 

MDA 12.9 14.5 

Ordinal regression 7.21 7.35 

BPNN 2.13 2.57 

PNN 1.97 4.21 

 

For the pipe-level models, the BPNN was found to be the best model according to the total 
model efficiency Etot for the calibration dataset (Figure 11). The BPNN ranked second but 
performed better for the validation dataset, the ordinal regression ranked third and the MDA 
ranked fourth. 

 

Figure 11: Total model efficiency Etot for the application of the pipe level models in the City of Greater Dandenong 

(adapted from Tran (2007)) 

Case studies in Canada and U.S.A. 

Ens (2012) applied a logistic regression model on the data of a Canadian municipality. 1315 
records were available but only 200 were used to provide an unbiased dataset between poor 
and good sewer conditions. The structural condition of CCTV samples has been evaluated 
using the WRc procedures (WRc, 2004). The model was calibrated considering age, 
condition and material. Results indicate that the model does not fit well with the data. 
According to Ens (2012) the logistic regression model may not be appropriate for the dataset 
or the use of other deterioration factors should be considered. 

Salman (2010) applied several deterioration models on inspection data of the city of 
Cincinnati (USA). The finalized dataset was composed of 11373 records: 80% were selected 
randomly for the calibration dataset and respectively 20% for the validation dataset. The 
structural condition of CCTV samples has been evaluated using the PACP procedures 
(NASSCO, 2007). The following deterioration factors were considered for model calibration: 
sewer age, material, function, size, depth, length, slope, and road class. The selected 
deterioration models focused on the pipe level: ordinal regression (not presented here), 
multinomial logistic regression and binary logistic regression analysis. 
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For the ordinal regression, necessary model assumptions were not met so the model cannot 
be used for sewer deterioration. As an alternative, the multinomial logistic regression was 
tested with three condition classes (poor, fair and good). The total model efficiency Etot was 
53% but prediction efficiency for condition class 2 is about 10%. This means the model failed 
to predict more than 90% of sewers in condition class 2 (Table 5). 

Table 5: Validation results from the application of the multinomial regression in the city of Cincinnati (USA) 
(adapted from Salman (2010)) 

 
Observed condition 

1 (good) 2 (fair) 3 (poor) 

Predicted 
condition 

1 (good) 521 245 166 

2 (fair) 48 59 61 

3 (poor) 238 315 622 

Efficiency Ei 65 % 10 % 73 % 

 

The binary logistic regression analysis has been applied after deriving two condition classes 
from the initial condition scores: poor and bad condition. The total model efficiency Etot was 
66% (Table 6). Prediction efficiency for good condition is 78% and for bad condition 46%. 

Table 6: Validation results from the application of the binary logistic regression in the city of Cincinnati (USA) 
(adapted from Salman (2010)) 

 
Observed condition 

0 1 

Predicted 
condition 

0 (good) 1112 460 

1 (poor) 314 389 

Efficiency Ei 78 % 46 % 

 

Chughtai et al. (2008) used a multiple regression model to simulate the condition state of 
sewers using data from two Canadian municipalities (Pierrefonds and Niagara Falls). The 
structural condition of CCTV samples has been evaluated using the WRc procedures (WRc, 
2004). The following deterioration factors were considered for model calibration: sewer age, 
material, function, size, depth, length, slope, bedding factor, and street category. 

The coefficient of determination (R2) indicates that the developed regression models can 
explain 72 to 88% of the total variability in the structural and operational sewer conditions. 
The AVP (average validity percent) is found to be within the range 82 to 86%. 

Khan et al. (2010) also developed deterioration models using data from Pierrefonds. They 
used neural network modeling with back propagation (BPNN) and probabilistic (PNN) 
approaches. 20% of the available data were divided to test the model. The coefficient of 
determination (R2) ranged within 71 and 86% depending on the deterioration factors 
considered.  

Case studies in Germany 

Le Gat (2008) developed a statistical deterioration model based on non-homogeneous 
Markov chains (NHMC). The model is implemented in the GompitZ software and was applied 
using inspection data of the city of Dresden (Germany). A subset of 7042 (287 km) concrete 
pipes was used to calibrate (75% of the subset) and validate (25%) the model. The structural 
condition of CCTV samples has been evaluated using the DWA procedures (DWA, 1999) 
The pipe diameter, installation period, and the type of effluent have been considered as 
covariates for the creation of the transition functions. 
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The model has been validated using a methodology based on the ability of the models to 
identify sewers in poor condition. The method is presented below. 

For each of the 1748 pipes selected for the validation, the vector of predicted condition 
probability is multiplied by a condition score vector to obtain a degradation score xi(ti) that 
represents the predicted condition of each pipe 

xi(ti) = pi(ti)
T ∙ k           (14) 

with 

 pi(ti) = (p0i(ti), p1i(ti), p2i(ti), p3i(ti), p4i(ti), p5i(ti))
T, is the vector of predicted probability, i.e. 

the prediction of the condition states probabilities of each inspected sewer at the age 
of the inspection (6 condition states, 5 being the worse condition), 

 k = (0, 1, 2, 3, 4, 5)T, is the condition score vector 

The degradation score xi(ti) will be particularly high if a pipe is predicted in very poor 
condition. Le Gat (2008) proposes to sort the predicted pipes in decreasing order according 
to their degradation score and then to represent the cumulative rank of the predicted pipe in 
function of the cumulative number of pipes in condition 5, the worst condition (Figure 12). 

 

Figure 12:  Cumulative rank of predicted pipes (y) in function of cumulative number of pipes in condition 5 (from 
Le Gat (2008)) 

The farther the curve departs from above the first diagonal, the more efficient the model is to 
detect the most deteriorated pipes (Le Gat, 2008). The curve begins with a very high slope 
and is above the bisector. It means that a large amount of pipes predicted in poor condition 
are actually in poor condition. According to Figure 12, 50% of the pipes in condition 5 have 
the 20% worst predicted degradation scores. This kind of approach underlines the interest to 
use such tools to identify sewer in poorest condition. 

2.2.3 Summary of validation results 

Since the validation methodologies and the data available for model calibration and 
validation differ, there is no clear conclusion about the best modeling approach at the pipe 
and pipe group levels. Furthermore, some models have been tested in several case studies 
(e.g. Markov models) whereas other models have been evaluated only once (e.g. Cohort 
model). Table 7 summarizes the main results from the case studies.  

Ana (2009) found out that the cohort survival model is the most useful model at the pipe 
group level. However, even considering the simplicity of the approach, no other validation 
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results have been found in the literature. Main reason could be the need of very extensive 
dataset to create sewer groups (cohorts) with sufficient inspected sewers in each condition 
state. Further research is needed to confirm the findings of Ana (2009) and demonstrate the 
benefits of the approach for strategic planning. 

Numerous projects (Ana, 2009; Baik et al., 2006; Mehle et al., 2001; Micevski et al., 2002; 
Tran, 2007; Wirahadikusumah et al., 2001) have presented the application of Markov based 
models to predict sewer pipes structural deterioration. However only very few of them 
provided validation results to conclude about their reliability. Ana (2009) found out that the 
Markov based models show insufficient prediction quality due to an overestimation of the 
deterioration. On the other hand, Tran (2007) concluded that the Markov model is suitable for 
sewer deterioration modeling and Le Gat (2008) demonstrated the benefits of using a 
Markov based approach for finding the sewers in the poorest condition. The quality of 
prediction of Markov models depends on the reliable calibration of the transition probabilities 
and thus on the availability of a large amount of inspection data. Especially, data of repeated 
inspection that reflect the condition changes of individual pipes over time are often missing 
(Le Gat, 2008). New applications of Markov model using extensive inspection dataset are 
required to conclude about their ability to simulate the deterioration process at both pipe 
group and pipe levels. 

Logistic regression and Multiple Discriminant Analysis (MDA) have been tested on several 
dataset but showed pretty low prediction performances (Ana, 2009; Ens, 2012; Salman, 
2010; Tran, 2007). The low prediction ability of MDA could be explained by non-valid 
statistical assumptions on the normality of the input factors (Ana, 2009). The low 
performance of logistic regression could originate (i) from a biased distribution of the 
datasets in terms of number of samples for each condition state or (ii) from the lack of data 
for important deterioration factors (Ana, 2009). However, Chughtai and Zayed (2008) 
managed to build regression models using deterioration factors to predict sewer condition 
grades with pretty encouraging validation results. These findings underline the potential of 
regression methods to provide a better understanding of the deterioration process at the pipe 
level if sufficient data regarding deterioration factors are available. 

Neural networks have proven to be successful tools for the prediction of the deterioration of 
individual pipes (Khan et al., 2010; Tran, 2007). However, results were not satisfying in the 
case study of Ana (2009). Main reason could be the lack of data to train the model: CCTV 
were available for less than 15% of the network.  
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Table 7: Validation results from the application of different sewer deterioration models in the literature: C for 
cohort survival models, M for Markov models, R for regression based models (including Discriminant 
Analysis) and N for neural networks. (+) indicates that the validation results are rather satisfying, (-) 
indicates that the model failed (or partially failed). 

Study City Samples 
used 

Model tested Results 

C M R N 

Ana 
(2009) 

Antwerp 
Belgium 

1539 + - - -  C is appropriate at the pipe group 
level 

 M fails at the pipe group level 

 R and N fail at the pipe level 

Tran 
(2007) 

Greather 
Dandenong 
Australia 

417  + - +  M is appropriate at the pipe group 
level 

 N is the best at the pipe level 

Ens 
(2012) 

Canadian city 200   -   Very low prediction quality 

Salman 
(2010) 

Cincinnati 
USA 

11373   -   R has overall good prediction 
quality but fails to predict sewer in 
medium condition 

Chughtai 
and 
Zayed 
(2008) 

Pierrefonds 
and Niagara 
Falls   
Canada 

-   +   Good prediction quality 

Khan et 
al. (2010) 

-    +  Good prediction quality 

Le Gat 
(2008) 

Dresden 
Germany 

7042  +    Good prediction quality 

 

 

 



 

38 
 

Conclusion and perspectives 

This report has first described the potential sewer deterioration factors and analyzed a panel 
of literature case studies regarding the relevance of each factor on sewer deterioration. 
Results are hardly directly comparable, because of the different construction practices, 
historical backgrounds and environmental conditions of the networks investigated. However, 
some trends regarding the most significant factors may be identified. In most studies, the 
construction year and the material seem to be the most relevant factor to explain sewer 
aging. Pipe size, depth, location and sewer function show generally a medium significance 
on sewer deterioration. Pipe slope was found to have a low significance for the structural 
deterioration but a high relevance on the hydraulic deterioration.  

In its second part, this report has introduced three main approaches for sewer deterioration 
modeling: deterministic, statistical, and artificial intelligence based models. Previous 
researches found out that deterministic models are too simplistic to reflect the entire 
deterioration process. They usually rely on a number of simplifying assumptions and do not 
account for the uncertainty that is associated with asset deterioration and failure (Marlow et 
al., 2009). Promising approaches are statistical and artificial intelligence models that use 
historical data to relate deterioration factors to sewer condition.  

Only very few case studies intended to evaluate the quality of prediction of these 
deterioration models. Furthermore, validation results are often contradictory and hardly 
comparable since (i) the data available for the calibration differ (percentage of CCTV 
available, type of deterioration factors available) and (ii) the metrics of the methodologies 
used to assess the quality of prediction differ. Furthermore, some models have been tested 
in several case studies (e.g. Markov models) whereas other models have been evaluated 
only once (e.g. cohort survival model). There is still no clear conclusion about the best 
modeling approach depending on the modeling purpose (pipe group or pipe level).  

There is also no clear conclusion regarding the quality of prediction that can be 
reached. The validation results presented in the case studies depend strongly on the quality 
and quantity of the input data available to calibrate the models, i.e. sewer condition classes 
and data regarding the potential deterioration factors. In most case studies, only a small 
percentage of CCTV data was available and much data regarding potential deterioration 
factors was missing.  

Indeed, due to the cost of CCTV inspection, only few utilities have already performed a full 
inspection of their entire sewer systems. If too little data is available, the subset used for 
model calibration is probably not representative for the entire network and will lead to poor 
modeling results. 

Data concerning the factors that influence sewer deterioration are not systematically 
gathered by sewer operators. If main data about age, material and size are mostly available, 
other data that may have a significant influence on sewer deterioration are rarely available. 
For example, the factors pipe location (surface loading), soil type, sewer bedding and 
presence of trees (influence of roots) have been rarely investigated since few data are 
available in the operator databases. As far as known to the authors, the influence of other 
potential significant factors, such as installation method, standard of workmanship, joint type 
and ground water level has not been investigated quantitatively. Since these factors are often 
considered to have a major influence on sewer deterioration, further studies are needed to 
gather data and analyze their influence of sewer deterioration along with the classical sewer 
characteristics. 

Even if data regarding deterioration factors are available in the operator databases, they are 
rarely exhaustive. For example, the information about sewer material or sewer construction 
year could be available only for a part of the network. Incomplete data can be used to 
calibrate deterioration models but the influence of partial information on the quality of 
modeling results should be carefully evaluated.  
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Thus, it is hard to conclude whether the low prediction performances in the presented case 
studies depend more on the poor dataset available than on the model ability itself. The 
potential of deterioration models is still to be evaluated on case studies using comprehensive 
datasets of both CCTV and deterioration factors. More generally, the influence of the amount 
of CCTV and data regarding deterioration factors available on the prediction quality of 
deterioration models should be carefully investigated. This step is crucial to inform sewer 
operators about the optimum data requirement for the successful use of deterioration 
models. 
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