

Berlin, Germany

2009

© Copyright 2009 by the KompetenzZentrum Wasser Berlin gGmbH. All rights including translation into other
languages, reserved under the Universal Copyright Convention, the Berne Convention or the Protection of Literacy and
Artistic Works, and the International and Pan American Copyright Conventions.

Cicerostr. 24
D-10709 Berlin
Germany
Tel +49 (0)30 536 53 800
Fax +49 (0)30 536 53 888
www.kompetenz-wasser.de

REPORT

Applicability of OpenMI and API for

coupling models within MIA-CSO

Project acronym: SAM-CSO
by

Hauke Sonnenberg

Kompetenzzentrum Wasser Berlin gGmbH

for

Kompetenzzentrum Wasser Berlin gGmbH

Preparation of this report was financed in part through funds provided by

ii

Important Legal Notice
Disclaimer: The information in this publication was considered technically sound
by the consensus of persons engaged in the development and approval of the
document at the time it was developed. KWB disclaims liability to the full extent
for any personal injury, property, or other damages of any nature whatsoever,
whether special, indirect, consequential, or compensatory, directly or indirectly
resulting from the publication, use of application, or reliance on this document.
KWB disclaims and makes no guaranty or warranty, expressed or implied, as to
the accuracy or completeness of any information published herein. It is expressly
pointed out that the information and results given in this publication may be out of
date due to subsequent modifications. In addition, KWB disclaims and makes no
warranty that the information in this document will fulfill any of your particular
purposes or needs. The disclaimer on hand neither seeks to restrict nor to
exclude KWB’s liability against all relevant national statutory provisions.

Wichtiger rechtlicher Hinweis
Haftungsausschluss: Die in dieser Publikation bereitgestellte Information wurde
zum Zeitpunkt der Erstellung im Konsens mit den bei Entwicklung und
Anfertigung des Dokumentes beteiligten Personen als technisch einwandfrei
befunden. KWB schließt vollumfänglich die Haftung für jegliche Personen-, Sach-
oder sonstige Schäden aus, ungeachtet ob diese speziell, indirekt, nachfolgend
oder kompensatorisch, mittelbar oder unmittelbar sind oder direkt oder indirekt
von dieser Publikation, einer Anwendung oder dem Vertrauen in dieses
Dokument herrühren. KWB übernimmt keine Garantie und macht keine
Zusicherungen ausdrücklicher oder stillschweigender Art bezüglich der
Richtigkeit oder Vollständigkeit jeglicher Information hierin. Es wird ausdrücklich
darauf hingewiesen, dass die in der Publikation gegebenen Informationen und
Ergebnisse aufgrund nachfolgender Änderungen nicht mehr aktuell sein können.
Weiterhin lehnt KWB die Haftung ab und übernimmt keine Garantie, dass die in
diesem Dokument enthaltenen Informationen der Erfüllung Ihrer besonderen
Zwecke oder Ansprüche dienlich sind. Mit der vorliegenden
Haftungsausschlussklausel wird weder bezweckt, die Haftung der KWB entgegen
den einschlägigen nationalen Rechtsvorschriften einzuschränken noch sie in
Fällen auszuschließen, in denen ein Ausschluss nach diesen Rechtsvorschriften
nicht möglich ist.

iii

Colophon

Title
Applicability of OpenMI and API for coupling models within MIA-CSO

Authors
Hauke Sonnenberg, Kompetenzzentrum Wasser Berlin gGmbH

Quality Assurance
Kai Schroeder, Kompetenzzentrum Wasser Berlin gGmbH
Benoît Béraud, Veolia Environnement Recherche & Innovation

Publication / Dissemination approved by technical committee members:
Christelle Pagotto, Veolia Eau
Cyrille Lemoine, Veolia Environnement Recherche & Innovation
Matthias Rehfeld-Klein, Senatsverwaltung für Gesundheit Umwelt und
Verbraucherschutz Berlin
Dörthe von Seggern, Senatsverwaltung für Gesundheit Umwelt und Verbraucherschutz
Berlin
Regina Gnirß, Berliner Wasserbetriebe
Kay Joswig, Berliner Wasserbetriebe
Erika Pawlowsky-Reusing, Berliner Wasserbetriebe
Nicolas Rampnoux, Veolia Environnement Recherche & Innovation
Emmanuel Soyeux, Veolia Environnement Recherche & Innovation
Yann Moreau-Le Golvan, Kompetenzzentrum Wasser Berlin gGmbH

Deliverable number
D 5

iv

Abstract (English)

The overall objective of MIA-CSO is to develop a model-based planning instrument for
impact based CSO control. The objective of this study was to examine the potential and
the drawbacks of different model coupling techniques that may be taken into account
within the MIA-CSO project.

- The models InfoWorks CS (Wallingford Software Ltd.) and HYDRAX/QSim
(German Federal Institute of Hydrology, BfG) that are intended to be used within
MIA-CSO as well as two different techniques for model coupling (Open Modelling
Interface – OpenMI and Application Programming Interfaces – API) are
described.

- It is presented how impacts of combined sewer overflows (CSO) on receiving
waters have been simulated in Berlin, so far.

- According to the objectives of MIA-CSO (statistical analysis, uncertainty and
sensitivity analysis), this report describes in the form of two possible scenarios,
how the intended integrated modelling system could be realized:

- scenario one is based on the application of the OpenMI,

- scenario two is based on the application of model-specific APIs.

- Practical tests are reported, in which simple scenarios, consisting of available
OpenMI components, have been set-up and carried out by use of the OpenMI
Configuration Editor. Potential and drawbacks of the OpenMI implementation in
InfoWorks CS are described.

- A wrapping procedure is described that helps making existing models comply
with the OpenMI standard. Assumptions are made about the effort involved.

- Experiences with the InfoWorks Type Library, which defines the InfoWorks API,
are reported and the available methods and properties are documented. It is
explained how specific tasks can be handled by means of API calls.

General Results and conclusions are:

- Concerning model coupling techniques, sequential linking, where models run one
after the other can be distinguished from parallel linking where models advance
simultaneously in time and where models may exchange data at each timestep.
In the current modelling practice applied in Berlin, models run sequentially. So
far, simulation, data export and import as well as data transformation are realized
manually. By automating these processes, the modelling procedure can be
improved in terms of efficiency, error-proneness and accuracy.

Results and conclusions concerning the OpenMI:

- The OpenMI is a generic interface specification that standardizes the parallel
linking approach. It defines the manner in which models are run and data are
exchanged between models. The process of making existing models compliant to
the OpenMI standard (migration) can be seen as teaching the models to ‘speak
the same language’.

v

- Migration of a model does not per se guarantee that the model can be used in
any OpenMI scenario. The useability of OpenMI components strongly depends
on

- how models implement the OpenMI and

- which exchange items and additional data operations they offer.

- Migration requires the model’s source code to be available. The migration
process is supported by software tools that are provided by the OpenMI
Association. The effort needed to migrate an existing modelling software into a
corresponding OpenMI-compliant component depends on the tasks to be
performed by the OpenMI component, personal preconditions and technical
preconditions. It strongly depends on the structure of the existing model engine.

- Of the model softwares used to date within MIA-CSO, only InfoWorks CS
supports the OpenMI. The current OpenMI implementation in InfoWorks only
allows for flows and water levels as input quantities.

- If OpenMI is implemented or not, will depend on the incentive for model
developers and on their ability in doing the migration. At least within near future, it
is improbable that the models Hydrax and QSim that are intended to be used
within MIA-CSO will be migrated to the OpenMI standard.

- Further developments at KWB will therefore concentrate on additional tools for
the MIA-CSO planning instrument, which allow for e.g. statistical analysis,
automated calibration, uncertainty and sensitivity analysis. By doing so, the
OpenMI approach can be followed, which will make own developments also
attractive to others.

Results and conclusions concerning API:

- Through Application Programming Interfaces (API), a software allows a selection
of its internal functions to be called from other softwares. An API is specific to the
software that it is provided by. An API often allows for automated access to those
functions of a software that normally are invoked by a Graphical User Interface.

- Compared to the OpenMI scenario, in the API scenario models are processed
sequentially. However, model preparation, data import, start of simulation and
data export are automated using the provided API functionality.

- The InfoWorks API documentation provided by Wallingford Software Ltd. is
incomplete. This is problematic if InfoWorks shall be accessed through its API.

- This report describes step-by-step how InfoWorks CS can be accessed through
its API from within the programming languages VBA and C#, respectively.

- The InfoWorks API allows for importing model data and input data from files.
Changing of model parameters can be realized indirectly by a sequence of data
export, data manipulation and data import. The same holds true for e.g. rainfall
series data. Only complete simulations can be invoked. Being limited to
properties of links (e.g. conduits, pumps, weirs), simulation results can be
exported to files.

- The possibility to change internal model parameters through the InfoWorks API
allows for applying this interface for e.g. statistical analysis, automated
calibration, uncertainty and sensitivity analysis.

vi

Abstract (French)

L’objectif premier du projet MIA-CSO est d’élaborer un outil de planification basé sur un
modèle afin de prédire l’impact des rejets des déversoirs d’orage par temps de pluie
(CSO – Combined sewer overflows) sur la qualité des eaux de la Spree, la rivière
berlinoise. Cette étude se propose d’évaluer les possibilités et les limites de différentes
techniques de couplage de modèles susceptibles d’être employées dans le cadre de
MIA-CSO.

- Le rapport décrit les modèles InfoWorks CS (Wallingford Software) et
HYDRAX/QSim (Institut fédéral allemand d’hydrologie, BfG) dont la mise en
œuvre est envisagée pour MIA-CSO, ainsi que deux techniques de couplage de
modèles (OpenMI – Open Modelling Interface, interfaces de programmation API
– Application Programming Interfaces).

- L’auteur présente les méthodes utilisées jusqu’ici par la ville de Berlin pour
simuler l’impact sur les eaux réceptrices des rejets des CSO.

- Conformément aux autres objectifs du projet MIA-CSO (analyse statistique des
résultats de simulation, analyse des incertitudes et de la sensibilité de la
modélisation), ce rapport présente deux scénarios potentiels pour la mise au
point du futur système de modélisation intégrée :

- le premier scénario repose sur l'interface standard OpenMI,

- le deuxième s’appuie sur l’utilisation d’interfaces de programmation (API)
propres à chaque application de modélisation.

- Le rapport rend compte des tests pratiques : des scénarios simples basés sur
des composants OpenMI disponibles ont été construits puis exécutés de manière
intégrée à l’aide de l’éditeur de configuration OpenMI (OpenMI Configuration
Editor). Les possibilités et les limites de l’implémentation d’OpenMI dans
InfoWorks CS sont passées en revue.

- Une procédure d’empaquetage (wrapping), destinée à rendre les modèles
existants compatibles avec le standard OpenMI, est présentée. L’effort que
représente le wrapping est évalué.

- Le rapport décrit les expériences réalisées avec la bibliothèque de types
InfoWorks, dans laquelle est définie l’interface de programmation (API)
d’InfoWorks, et il documente les méthodes et propriétés mises à disposition par
l’API. Il explique comment certaines tâches spécifiques peuvent être gérées par
des appels d’API.

Résultats et conclusions d’ensemble :

- Techniques de couplage de modèles : on distingue globalement le couplage
séquentiel, dans lequel les modèles s'exécutent l'un après l'autre, du couplage
parallèle où les modèles progressent de manière simultanée et peuvent
échanger des données à tout moment. L’approche actuellement en vigueur à
Berlin s’appuie sur une modélisation séquentielle. Les opérations de simulation,
d’exportation, d’importation ou de transformation des données sont réalisées
manuellement. Leur automatisation permettrait d’améliorer l’efficience et la
précision, et de réduire la probabilité d’erreur de la procédure de modélisation.

vii

Résultats et conclusions concernant OpenMI :

- OpenMI est une spécification d’interface générique qui standardise l’approche de
couplage parallèle. Ce standard définit la façon dont les modèles s’exécutent et
dont les données sont échangées entre modèles. Le processus de migration
permet de rendre les modèles existants compatibles avec le standard OpenMI :
on leur apprend ainsi à « parler le même langage ».

- La migration en soi ne garantit pas que le modèle en question puisse être utilisé
dans n’importe quel scénario OpenMI. L’applicabilité des composants OpenMI
dépend aussi sensiblement :

- de la manière dont les modèles implémentent l’interface OpenMI, et

- du type d’éléments d’échange (exchange items) qu’ils proposent – quelles
variables du modèle (débit, hauteur d’eau par exemple) peuvent être
échangées contre des éléments du modèle (regards, canaux, par
exemple), et | (exemple : agrégation spatiale).

- La migration d’un logiciel de modélisation existant suppose que le code source
soit disponible. Le processus de migration est soutenu par des outils logiciels
fournis par l’Association OpenMI. L’effort nécessaire pour transformer un logiciel
de modélisation existant en un composant compatible avec OpenMI dépend des
tâches imparties à ce composant OpenMI, des difficultés rencontrées par le
développeur et des pré-requis techniques. De plus, cet effort dépend largement
de la structure du noyau de modélisation existant.

- Parmi les logiciels de modélisation utilisés jusqu'ici dans le cadre du projet MIA-
CSO, InfoWorks CS est le seul à offrir OpenMI. Toutefois, l’implémentation
actuelle d’InfoWorks ne propose comme variables d’entrée que les débits et les
hauteurs d'eau.

- La décision de mettre en œuvre OpenMI ou d’y renoncer dépendra notamment
de l’attrait de cette interface pour les développeurs des modèles, et de leur
aptitude à mener à bien la migration. À brève échéance, il est peu probable que
les modèles Hydrax et QSim retenus pour le projet MIA-CSO fassent l’objet d’une
migration vers OpenMI.

- Ainsi, dans un proche avenir, le Centre de compétence sur l’eau de Berlin (KWB)
concentrera ses efforts sur la mise au point de modules complémentaires pour
l'outil de planification de MIA-CSO : analyse statistique, calage automatique,
analyse de sensibilité et d’incertitudes, par exemple. Les efforts fournis afin
d’appliquer l’approche OpenMI et l’expérience acquise pourraient être
intéressants à plus long terme pour d’autres utilisateurs.

Résultats et conclusions concernant les API :

- Par le biais d’interfaces de programmation (API), un logiciel permet à d’autres
logiciels d’appeler certaines de ses fonctions internes. Une API est propre au
logiciel avec lequel elle est fournie. Une API permet souvent d’accéder
automatiquement aux fonctions d’un logiciel normalement appelées par une
interface utilisateur graphique (GUI).

- Contrairement à ce qui se passe dans le scénario basé sur OpenMI, les modèles
qui utilisent des API sont traités de façon séquentielle. Toutefois, la préparation
du modèle, l’importation des données, le lancement de la simulation et

viii

l’exportation des données s’effectuent automatiquement via des appels de
fonctions API.

- La documentation sur l’application InfoWorks API fournie par Wallingford
Software est incomplète. Cela pose problème pour accéder à InfoWorks via sa
propre API.

- Ce rapport décrit étape par étape la manière d'accéder aux composantes du
logiciel InfoWorks CS via son API en utilisant respectivement les langages de
programmation VBA et C#.

- L’interface API d’InfoWorks permet d’importer les données décrivant un modèle
et ses données d’entrée à partir de fichiers. Les paramètres du modèle peuvent
être modifiés de manière indirecte par une séquence d’exportation des données,
de manipulation des données exportées et d’importation de données. Ceci vaut
également pour les données sur les séries pluviométriques stockées dans le
modèle, par exemple. Seules des simulations complètes peuvent être appelées
pour une période de simulation donnée via l’API. Les résultats des simulations
permettent d’exporter dans des fichiers uniquement les propriétés au niveau des
jonctions entre deux éléments du réseau tels que pompes, déversoirs; quant aux
propriétés des nœuds (nodes), elles ne peuvent être exportées.

La possibilité de modifier les paramètres internes du modèle par le biais de l’interface
API d’InfoWorks permet par exemple d’exploiter cette interface pour l’analyse statistique,
le calage automatique, ainsi que l’analyse des incertitudes et de la sensibilité.

ix

Abstract (German)

Das übergeordnete Ziel des KWB-Projeks MIA-CSO ist die Entwicklung eines
modellbasierten Planungsinstruments für die Vorhersage der Auswirkungen von
Mischwasserüberläufen auf die Gewässerqualität in der Berliner Stadtspree. Das Ziel
dieser Teilstudie war, verschiedene Techniken der Modellkopplung, die innerhalb des
Projektes MIA-CSO zur Anwendung kommen können, auf ihre Möglichkeiten und
Einschränkungen hin zu untersuchen.

- Die für den Einsatz in MIA-CSO vorgesehenen Modellanwendungen InfoWorks
CS (Wallingford Software Ltd.) und HYDRAX/QSim (Bundesanstalt für
Gewässerkunde, BfG) sowie zwei verschiedene Techniken der Modellkopplung
(Open Modelling Interface, OpenMI und Application Programming Interface, API)
werden beschrieben.

- Es wird dargestellt, wie die Einwirkungen von Mischwasserüberläufen auf die
Gewässer in Berlin bisher simuliert wurden.

- Die zusätzlichen Ziele von MIA-CSO (statistische Auswertung der
Simulationsergebnisse, Unsicherheits- und Sensitivitätsanalyse der
Modellierungen) berücksichtigend beschreibt dieser Bericht anhand zweier
möglicher Szenarien, wie das geplante integrierte Modellsystem realisiert werden
könnte:

- Szenario eins basiert auf der standardisierten Schnittstellentechnologie
OpenMI,

- Szenario zwei basiert auf der Verwendung von Programmierschnittstellen
(API), die für die jeweiligen Modellanwendungen spezifisch sind.

- Es werden praktische Tests beschrieben, in denen verfügbare OpenMI-
Modell¬komponenten mit Hilfe des OpenMI Konfigurationseditors (OpenMI
Configuration Editor) zu einfachen Szenarien zusammengesetzt und dann
integriert ausgeführt wurden. Möglichkeiten und Einschränkungen der OpenMI-
Implementierung in InfoWorks CS werden beschrieben.

- Der Vorgang des „Wrapping“ (dt. Einpacken), mit dessen Hilfe existierende
Modellanwendungen in OpenMI-kompatible Modellkomponenten umgewandelt
werden können, wird beschrieben. Es wird der Aufwand abgeschätzt, den das
Wrapping erfordert.

- Erfahrungen mit der InfoWorks-Typbibliothek, in der die InfoWorks-
Programmier¬schnitstelle (API) definiert ist, und die über die API verfügbar
gemachten Methoden und Eigenschaften werden dokumentiert. Es wird
beschrieben, wie spezielle Aufgaben der Modellierung und Simulation über
entsprechende Aufrufe von API-Methoden erledigt werden können.

Allgemeine Ergebnisse und Schlussfolgerungen:

- Hinsichtlich verschiedener Modellkopplungstechniken kann allgemein zwischen
sequentieller Kopplung und paralleler Kopplung unterschieden werden. Bei der
sequentiellen Kopplung werden die Modelle nacheinander ausgeführt. Bei der
parallelen Kopplung hingegen schreiten die Modelle gleichzeitig in der Zeit fort,
und die Modelle können zu jedem Zeitpunkt Daten miteinander austauschen. In

x

der zurzeit für die Berliner Situation angewendeten Modellierungspraxis werden
die Modelle sequentiell ausgeführt. Sowohl Simulationsstart, Datenexport und -
import als auch erforderliche Datenumformungen werden manuell durchgeführt.
Indem diese Prozesse automatisiert werden, kann die derzeitige Praxis in Bezug
auf Effizienz, Fehleranfälligkeit und Genauigkeit zukünftig verbessert werden.

Ergebnisse und Schlussfolgerungen bezüglich OpenMI:

- OpenMI ist eine allgemeine Schnittstellenspezifikation, die den parallelen
Modellkopplungsansatz standardisiert. Sie beschreibt die Art und Weise, in der
Modelle ausgeführt und in der Daten zwischen ihnen ausgetauscht werden. Das
als Migration bezeichnete Anpassen von Modellen an den OpenMI-Standard
kann so verstanden werden, dass den Modellen beigebracht wird, dieselbe
Sprache zu sprechen.

- Modellmigration an sich garantiert noch nicht, dass das Modell in jedem
möglichen OpenMI-Szenario sinnvoll verwendet werden kann. Die Anwendbarkeit
von OpenMI-Komponenten hängt in hohem Maße auch davon ab,

- wie Modelle die OpenMI-Schnittstelle implementieren und

- welche Austausch-Elemente (engl. exchange items) sie anbieten, d.h.
welche Modellvariablen (z.B. Durchfluss, Wasserstand) für welche
Modellelemente (z.B. Schächte, Haltungen eines Kanalnetzes)
ausgetauscht werden können und welche Datenoperationen (z.B.
räumliche Aggregation) von diesen Elementen angeboten werden.

- Die Migration einer existierenden Modellierungssoftware erfordert, das der
Quellcode der Software zur Verfügung steht. Der Migrationsprozess wird durch
Software-Werkzeuge unterstützt, die von der OpenMI-Vereinigung (OpenMI
Association) bereitgestellt werden. Der für die Migration einer existierenden
Modellierungs¬software in eine entsprechende OpenMI-kompatible Komponente
erforderliche Aufwand hängt neben den Aufgaben, die von der OpenMI-
Komponente erfüllt werden sollen, von Erfahrungen des Softwareentwicklers und
von technischen Voraussetzungen ab. Der Aufwand hängt darüber hinaus
entscheidend von der Softwarestruktur des bestehenden Modellkerns ab.

- Von den Modellanwendungen, die bisher für die Verwendung in MIA-CSO
vorgesehen sind, unterstützt nur die Software InfoWorks CS die OpenMI-
Schnittstelle. Die aktuelle Implementierung von OpenMI in InfoWorks CS erlaubt
jedoch nur Durchflüsse und Wasserstände als Eingangsgrößen in die InfoWorks
OpenMI-Komponente.

- Ob OpenMI in existierende Modellanwendungen implementiert wird oder nicht,
hängt von dem Anreiz für die Modellentwickler ab und von deren Fähigkeit, die
Modellmigration durchzuführen. Zumindest in der nahen Zukunft ist es
unwahrscheinlich, dass die Modelle HYDRAX und QSim, die für den Einsatz in
MIA-CSO vorgesehen sind, mit der OpenMI-Schnittstelle ausgestattet werden.

- Die weiteren Entwicklungen am KWB werden sich deshalb auf die für das
Planungsinstrument zusätzlich benötigten Werkzeuge konzentrieren, die z.B.
statistische Auswertungen, automatische Kalibrierung, Unsicherheits- und
Sensitivitätsanalyse ermöglichen. Dabei kann der OpenMI-Ansatz weiter verfolgt
werden, was die eigenen Entwicklungen auch für Andere attraktiv machen kann.

xi

Ergebnisse und Schlussfolgerungen bezüglich API:

- Durch Anwendungs-Programmierschnittstellen (API) ermöglicht eine Software,
eine Auswahl seiner internen Funktionen von einer anderen Software aus
aufzurufen. Eine API ist spezifisch für die Software, die die API anbietet. Oft
ermöglichen APIs den Zugriff auf diejenigen Funktionen einer Software, die von
der Software selbst normalerweise über die graphische Benutzeroberfläche
angestoßen werden.

- Im Vergleich zum OpenMI-Szenario werden die Modelle im API-Szenario
sequentiell, also nacheinander, ausgeführt. Jedoch sind in diesem Szenario
Modellvorbereitung, Datenimport, Simulationsstart und Datenexport durch den
Aufruf entsprechender, über die API verfügbar gemachter, Funktionen
automatisiert.

- Die von Wallingford Software Ltd. zur Verfügung gestellte Dokumentation der
InfoWorks API ist unvollständig. Dies stellt ein Problem dar, wenn die InfoWorks
API genutzt werden soll.

- Dieser Bericht beschreibt Schritt für Schritt, wie Teile der InfoWorks CS Software
über deren API aus den Programmiersprachen VBA bzw. C# heraus verwendet
werden können.

- Die InfoWorks API ermöglicht es, modellbeschreibende Daten und
Modelleingangs¬daten aus Dateien zu importieren. Modellparameter können
indirekt durch eine Abfolge von Datenexport, Manipulation der exportierten Daten
und Datenimport verändert werden. Auf gleiche Weise können z.B. im Modell
hinterlegte Regenserien verändert werden. Über die API lassen sich nur
komplette Simulationen über einen vorgegebenen Simulationszeitraum
ausführen. Von den Simulationsergebnissen lassen sich über die API nur die
Eigenschaften von Verbindungen (engl. links), wie Kanalhaltungen, Pumpen oder
Wehre, in Dateien exportieren, nicht jedoch Eigenschaften von Knoten (engl.
nodes).

- Die Möglichkeit, interne Modellparameter indirekt über die InfoWorks API zu
ändern, erlaubt es, diese Schnittstelle z.B. für die statistische Auswertung,
automatische Kalibrierung sowie Unsicherheits- und Sensitivitätsanalyse zu
nutzen.

xii

Acknowledgements

This report was improved by conversations and discussions with several people. The
author thanks all colleagues, who supported the work on this study. Particular thanks to
Dr. Frank Schumacher (Dr. Schumacher Ingenieurbüro für Wasser und Umwelt, Berlin)
for giving information about the programs HYDRAX, QSim and GERRIS and to Benoît
Beraud (Veolia Water) for knowlegde transfer concerning the InfoWorks Application
Programming Interface (API) and for the reviewing of this report. The author further
thanks Frank Reußner (Technical University Darmstadt) for discussions on the OpenMI
interface and the Wallingford Support team for providing information about the InfoWorks
API as well as the InfoWorks implementation of the OpenMI.

xiii

Table of Contents

Chapter 1 : Introduction... 1

Chapter 2 : Materials and Methods.. 2

2.1 Involved Modelling Softwares .. 2

2.1.1 InfoWorks CS .. 2

2.1.2 HYDRAX ... 2

2.1.3 QSim... 2

2.1.4 GERRIS .. 3

2.2 Model Coupling Techniques... 3

2.2.1 OpenMI ... 4

2.2.2 Application Programming Interfaces (APIs) ... 5

Chapter 3 : Current Modelling Practice for CSO impact assessment in Berlin 6

3.1 Description of Current Modelling Practice .. 6

3.2 Disadvantages of Current Modelling Practice... 8

Chapter 4 : Possible Model Coupling Scenarios.. 9

4.1 Fully OpenMI Integrated Model .. 9

4.2 Using Available APIs.. 12

Chapter 5 : Applicability of the OpenMI: Testing of existing components....................... 16

5.1 Objectives and Strategy... 16

5.2 Preconditions... 16

5.2.1 Using the OpenMI Configuration Editor ... 16

5.2.2 Creating OpenMI components from InfoWorks CS models............................ 17

5.3 Scenario A: Single InfoWorks CS component .. 19

5.4 Scenario B: Linking two different InfoWorks CS components............................... 20

5.5 Scenario C: Linking InfoWorks CS to other OpenMI components 23

5.6 Results... 25

5.6.1 Compatibility issues... 26

5.6.2 Limitations of the OpenMI implementation in InfoWorks CS 27

Chapter 6 : Applicability of the OpenMI: Making existing models OpenMI-compliant 29

6.1 Model Migration ... 29

6.1.1 Requirements for an OpenMI-compliant component...................................... 29

6.1.2 Wrapping concept and wrapping pattern provided in the OpenMI SDK 30

6.1.3 Model migration in seven steps ... 32

6.2 Estimation of Effort... 35

6.2.1 Tasks to be performed by the OpenMI component .. 35

6.2.2 Personal preconditions .. 35

xiv

6.2.3 Technical preconditions .. 36

6.2.4 Effort related to the different steps of model migration 36

6.2.5 Effort related to the models intended to be used in MIA-CSO 37

Chapter 7 : The InfoWorks Application Programming Interface (API) 38

7.1 Objectives.. 38

7.2 Materials and Strategy... 39

7.2.1 InfoWorks API documentation... 39

7.2.2 Chosen programming language and environment... 40

7.2.3 Testing procedure ... 41

7.3 Results .. 41

7.3.1 Accessing the InfoWorks Type Library .. 41

7.3.2 Content of the InfoWorks Library... 43

7.3.3 Calling individual API methods.. 44

7.3.4 Performing more complex tasks by calling API methods 49

Chapter 8 : Summary and Conclusions... 52

Appendix A : Glossary of programming-specific terms .. 55

Appendix B : The IEngine interface... 56

Appendix C : Step-by-step procedure to access the InfoWorks API from within VBA 59

Appendix D : Step-by-step procedure to access the InfoWorks API from within C#....... 64

Appendix E : Methods and properties of the InfoWorks library 69

Appendix F : Class Diagram of API test application .. 75

Appendix G : Evaluation of simulation results obtained by running an OpenMI-linked

system .. 76

Appendix H : OpenMI Demo Models ... 79

Bibliography .. 80

1

Chapter 1: Introduction

The overall objective of MIA-CSO is to develop a model-based planning instrument for
impact based CSO control. This will be done by coupling InfoWorks CS (commercial
sewer model by Wallingford Software Ltd.), QSim (water quality model developed by
BfG, German Institute of Hydrology) and a module for statistical analysis of the
simulation results. The planning instrument will be used for impact/recipient based
scenario analysis of CSO management strategies. The impact assessment will be based
on a minimum set of significant and operable parameters (dissolved oxygen and
ammonia in the receiving water) under consideration of uncertainties. The water quality
model QSim will be adapted to the Berlin situation. Monitored data (flows and water
quality) will be available for model adaptation, calibration and validation.

In order to achieve these general objectives of MIA-CSO, methods are needed to
facilitate the whole planning process including modelling, simulation and evaluation.
Different approaches may be followed for model coupling and for the integration of the
additionally needed tools (e.g. for model calibration, statistical analysis of results,
uncertainty analysis, etc.).

This document describes the results of a practical study aiming at assessing some
possible approaches. Particularly, OpenMI, the European standard for model linking, and
the InfoWorks Application Programming Interface (API) are considered.

In order to provide tools helping to fullfill the requirements of the European Water
Framework Directive, a consortium of European partners developed a standard for
linking environmental models. This standard is called the Open Modelling Interface and
Environment (OpenMI) and is already supported by some modelling softwares (e.g. the
here used software InfoWorks).

Modelling softwares commonly provide a Graphical User Interface (GUI) which is the
visible panel that enables the user to input or import data, setup a model, run a model,
export results, etc. Additionally, some modelling softwares are shipped with a so called
Application Programming Interface (API). An API gives access to a selection of program
features of the software. So, it becomes possible to use parts of the software from within
other softwares, without the need of user interaction through the GUI.

Objectives of this study are to:
- gain experiences with the Open Modelling Interface and Environment (OpenMI),

especially with the OpenMI implementation of InfoWorks CS.

- estimate the effort needed to make models OpenMI-compliant.

- test the Application Programming Interface (API), provided for the modelling
software InfoWorks.

- provide information on the applicability of OpenMI and API within MIA-CSO.

2

Chapter 2: Materials and Methods

2.1 Involved Modelling Softwares

2.1.1 InfoWorks CS

The software InfoWorks CS, produced by Wallingford Software Ltd in Wallingford, UK, is
a hydrodynamic urban drainage modelling software which is able to simulate rainfall-
runoff and the transport of sewage in the sewer system. Water quality is simulated by
applying mass conservative approaches.

From its version 7, the InfoWorks program family supports the OpenMI interface.
Furthermore, an Application Programming Interface (API) is provided.

2.1.2 HYDRAX

Hydrodynamics (flows and levels) of the CSO receiving river are simulated by the river
transport software HYDRAX, developed by the German Federal Institute of Hydrology
(BfG).

In HYDRAX, a river course is defined by river stretches which themselves are
determined by their ending points. The state variables of the model are water levels,
flows and flow velocities. For each river stretch, boundary conditions need to be
assigned.

An implicit difference scheme is used to transform the Saint Venant equations, which
describe the dynamic behaviour of the water body, into non-linear difference equations.
The quadratic elements are linearised by the Newton approximation.

The software HYDRAX is written in the programming language C. It is delivered as an
executable program that does not provide a graphical user interface. It gets all input data
in terms of input files and delivers all results in terms of output files. These and other
program parameters are given to the program on the command line. HYDRAX does not
implement the OpenMI interface (is not OpenMI-compliant). HYDRAX does not offer an
API (personal communication with Dr. Schumacher).

2.1.3 QSim

The water quality model QSim (Quality Simulation) is an instrument for simulation and
prediction of element budgets and plankton dynamics in rivers. Since 1979, it is
developed and applied by the German Federal Institute of Hydrology (BfG). The model is
mainly used to determine and to estimate the effects that hydro-engineering actions may
have on water quality of the federal waterways. QSim is also applied in order to work on
problems concerning water management and river basin management.

QSim mathematically describes the complex chemical and biological processes that
occur in flowing waters. The model combines hydraulic and ecologic model components
which are able to calculate the most important biological processes of oxygen and
nutrient balances, the growth of algae and zooplankton as well as the processes
occurring at the river bed.

3

QSim is mainly used to produce annual hydrographs of oxygen content and other water
quality parameters as well as biological variables (e.g. algae biomass) along a river
stretch.

The current version of QSim is 10.0. The continual development of QSim takes into
account the experiences of numerous applications of QSim for different river systems in
Germany. Also in future, QSim will be applied by the BfG.

As the calculation of water quality depends on flow conditions and water levels in the
river, these hydraulic information are an important boundary condition for QSim. The
hydraulic conditions are simulated first by the river transport model HYDRAX (see
above) and then given as an input to QSim.

The software QSim is written in the programming language Fortran. As HYDRAX, QSim
is delivered in the form of an executable file and does not offer a graphical user interface.
The program accepts program parameters (e.g. paths to the required input files). QSim
does not implement the OpenMI interface (is not OpenMI-compliant). QSim does not
offer an API (personal communication with Dr. Schumacher).

2.1.4 GERRIS

GERRIS is a program developed by Dr. Schumacher Ingenieurbüro für Wasser und
Umwelt, Berlin. By offering a user interface, the software facilitates the usage of
HYDRAX and QSim. GERRIS can be seen as a mediator between input data, HYDRAX
model, QSim model and output data.

Via the user interface, the GERRIS program allows the user to setup a river network
interactively. Information describing the model, boundary and initial conditions are stored
in an internal database. The program offers an ’import assistant’ to read input data. It can
handle Excel files containing comma separated values (CSV). These data are stored in
the database and also transformed into input files that are required by the HYDRAX and
QSim model softwares. GERRIS takes care of the different formats of files that are
required and produced by HYDRAX and QSim. In two steps, the user can first start
HYDRAX to calculate the hydraulic behaviour of the river and then run QSim for
simulating water quality. Therefore, the results of the HYDRAX simulation are used as
boundary and initial conditions for the QSim simulation.

The GERRIS application is a Visual Basic program that accesses a Microsoft Access
database for data storage. GERRIS does not implement the OpenMI interface (is not
OpenMI-compliant). GERRIS does not offer an API (personal communication with Dr.
Schumacher).

2.2 Model Coupling Techniques

When linking different models together, corresponding variables, which may be defined
differently in the different models, need to be related to each other. For example, if a
model, which uses COD concentrations as a measure for organic loads, is linked to a
model, which is based on BOD concentrations, it is important to define, how the different
variables can be transformed from one representation into the other. It has to be paid
attention when different models use variables of the same name but with a different
meaning. Often, conversion factors are defined, which are applied at the interface
between two linked models. It is also important to consider the different spatial or
temporal discretisations that are applied in the different models.

4

Beside these conceptional considerations it is important to choose an appropriate
software technique that can be used in order to realize data transfer between two models
in each case. Regarding software techniques, two different approaches can be
distinguished.

Models can be linked sequentially. In this case, the models are run one after the other,
each over the whole simulation period. The simulation results of the first model are fed
into the second model, which, on his part, does the simulation before it feeds its own
results to the next linked model etc. Sequential coupling of models does not consider
feedback of one (data receiving) model back to the linked (data providing) model.

In contrast to sequential coupling, models can be linked in parallel (synchronously). In
that case, at any timestep, all the incorporated models are evaluated (for that timestep).
By doing so, a kind of feedback between models becomes possible since the output of
each model at a given timestep can be used as input of any other model at the next
timestep.

Which type of model linking to choose not only depends on the available software
techniques but mainly on the problem to be investigated: If feedback between models
(e.g. reverse flow) is not important to consider, sequential coupling may be sufficient.
However, if feedback needs to be considered (e.g. if the sewer system is controlled due
to a state variable of a wastewater treatment plant model), parallel model coupling
becomes necessary.

In terms of software realization, parallel coupling requires extensive possibilities in
accessing the individual model software programs to be coupled. This may be given if
the model software codes are freely available or if the modelling software programs offer
adequate software interfaces which allow to use (parts of) the models functionality from
within self written software programs. The European standard interface OpenMI (see
http:// www.openmi.org) is an example of a parallel coupling approach.

2.2.1 OpenMI

The Open Modelling Interface and Environment (OpenMI) is the outcome of the
European project HarmonIT (see http://www.harmonit.org). Main part of the
OpenMI is a standard specification which pre-defines a format for communication and
data exchange between software modules (components) in general and computer
models in particular. There have been three releases of the OpenMI. The current release
is 1.4 (after releases 1.0 and 1.2). A new OpenMI standard release is not expected until
the release of OpenMI standard version 2 (planned in December 2009).

OpenMI defines both the interfaces between models (i.e. the set of functions, also called
methods, that each model can expect from any other OpenMI-model to be exposed) as
well as the structure of data that is being exchanged. The interface allows models to
exchange data at run time, i.e. it represents the parallel approach (see above). This is
realized by a so-called request-reply architecture (see Figure 1).

In that architecture, the linked components (‘A’ through ‘D’ in Figure 1) act as providers
and acceptors of data. A model component that depends on data from another model,
requests that data from the corresponding model component (by calling the GetValues
method) and waits until the same component replied on that request. The data transfer
between OpenMI components is handled within a single thread, i.e. a component
handles only one request at a time before acting upon another request. The data

5

exchange in an OpenMI system is triggered by invoking the last component in the chain
of linked components (component ‘A’ in Figure 1). From that moment on, computation,
synchronization and data exchange between all components is handled autonomously.
There is no supervising authority that controls the sequence of model calls. Rather, the
order of model calculations results from the sequence of requests that are sent between
the models.

Figure 1: Linking of model components with OpenMI. Figure taken from (Gregersen et al., 2007).

The precondition for linking models using the OpenMI standard is that the models
intended to be used support this standard. Making a model compliant with the standard
is also referred to as implementing the standard. While the notation ‘component’ is
generally used for software modules that are able to communicate with each other, the
OpenMI terminology uses the term Linkable Component for components that implement
the OpenMI specification. Models that are linkable components in this sense are also
referred to as OpenMI-compliant models.

One major aim in the development of OpenMI was to make it easily feasible to render
existing model software (legacy code) OpenMI-compliant. Therefore, the OpenMI
dissemination contains tools for encapsulating legacy code into a so called wrapper that
fullfills the OpenMI interface specification and that needs to be adequately connected to
the code (cf. Chapter 6).

As the OpenMI specification is quite a new development, up to now there are only a few
model software programs (mainly of big software companies) that are OpenMI-compliant
(Sonnenberg, 2008).

2.2.2 Application Programming Interfaces (APIs)

An Application Programming Interface (API) is an interface, which a software system
may provide in order to allow other software systems to use some of its functionality. The
API gives access to a set of routines, data structures, object classes or other software
elements. The API is a specification of the names and types of available objects,
especially the routines (methods) and the parameters accepted by these routines. The
software that provides the functionality described by an API is said to ‘implement’ the
API. By providing an API, a software developer can give access to its software without
revealing the underlying source code.

6

Chapter 3: Current Modelling Practice for CSO impact

assessment in Berlin

3.1 Description of Current Modelling Practice

This chapter describes the modelling practice which has been applied when the effects
of CSO on the receiving river has been simulated in former studies (Schumacher et al.,
2007).

A sequential coupling approach was applied, i.e. the models have been run one after the
other with the results of one model being fed into the following model in each case.

Rainfall runoff and sewage transport was simulated by InfoWorks CS, resulting in the
discharges and water quality parameters of CSO at the river outlets. The simulated
discharges have been used as input data for the model software HYDRAX which
simulated river hydraulics. The results of the HYDRAX simulation (water levels and flows
along the considered river reach), together with the water quality parameters simulated
beforehand by InfoWorks CS, have then been used as input data to the river quality
model QSim.

Each of the applied modelling software operates according to the following principle,
which is typical for modelling applications (Figure 2): The user supplies information in the
form of input files (light blue boxes labelled ‘Input’). In these input files, the specific
scenarios of the system to be modelled (e.g. sewer network, river network as well as
initial and boundary conditions like specific rainfall events) are described. In creating the
input files, the user might be supported by graphical user interfaces (GUI; grey boxes in
Figure 2). The calculations of the modelled systems take place in the so called model
engines (orange boxes). Usually, the engines are generic representations of the
processes. A model engine reads the input files, performs the calculations and outputs
the results again to files (light blue boxes labelled ‘Output’).

Figure 2: Interaction of models being applied for CSO impact analysis in Berlin. The numbers

indicate the steps within an integrated model run, referenced in the main text.

7

As the involved programs do not share a common file format for input and output files,
result files being produced by one model cannot just be taken as an input to the next
model. Data transformations have to be performed on result files in order to produce
input files which fullfill the semantic and formal requirements of the next model in each
case.

Concerning the river models HYDRAX and QSim, the necessary transformations
between HYDRAX output files and QSim input files are performed within the software
GERRIS, which manages all data that is required by any of the two models, over a
common graphical user interface.

Main part of these data are the CSO characteristics (quantity and quality), simulated by
InfoWorks CS. The simulated overflow events are imported into the GERRIS database
by use of the so called ‘import assistant’, a sub-module within the GERRIS software
which offers a dialog window and so interactively supports the import process.

The data format exported from InfoWorks CS does not correspond to the format that is
expected by the import assistant of GERRIS. Thus, the result files produced by
InfoWorks (in CSV-format; CSV = comma separated values) need to be adapted
(manually or automated) to the file structure that is understood by the import assistant.

The preliminary actions to be performed in order to prepare simulations are:

- Related to the sewer system and InfoWorks CS:

o Setup of the sewer network model. Berliner Wasserbetriebe hold and
maintain InfoWorks CS networks of different Berlin catchments.

o Preparation of input data (e.g. rainfall series) and import to InfoWorks.

o Definition of real time controls (RTC) in InfoWorks CS. RTC are used to
describe the controlling of the pumping stations and further actuators.

o Definition of a specific simulation run including start time, duration of the
simulation and other simulation parameters like simulation timestep,
gauging timestep, applied RTC scenario, etc.

- Related to the river system and HYDRAX/QSim/GERRIS:

o Setup of the river model. The GERRIS user interface allows to
interactively define river sections, cross sections, etc.

o Preparation of input data that is not related to CSO, and thus will not be
delivered by the InfoWorks CS simulations. Related to water quality
simulations, these data are for example weather conditions or chemical or
biological parameters like concentration of algae. Of these parameters
average values are assumed due to lack of measured data.

When the models are prepared, the steps to be performed for an overall simulation of the
coupled sewer/river system including data transfer are (see Figure 2; the numbers in
yellow circles correspond to the step numbers mentioned here):

Step 1: Simulation of the sewer system in InfoWorks CS. The InfoWorks CS engine is
started from within the InfoWorks GUI.

Step 2: Export of simulated overflow hydrographs from InfoWorks CS into CSV files. For
each quantity (e.g. flows, levels, concentrations of COD, BOD) a separate file is
produced by InfoWorks.

Step 3: Manual preparation of exported CSV files for import to HYDRAX/QSim.

8

Step 4: Import of prepared data into the internal database of GERRIS via the ‘Import
Assistant’ of GERRIS.

Step 5: Simulation of river system by first running HYDRAX (5a) and then running QSim
(5b). The simulations are invoked from within the GERRIS GUI.

Step 6: Results from the river simulations can be viewed within GERRIS or exported to
files (export is not considered in Figure 2).

3.2 Disadvantages of Current Modelling Practice

The modelling procedure described in the last section can be improved in terms of
efficiency, error-proneness and accuracy.

Using different non-compatible modelling software programs comes with the drawback of
several steps in the modelling and simulation practice that have to be performed
manually (see above section). The manual processing is time-consuming and requires
the presence of the modeller to start the next process in each case. In InfoWorks CS, for
example, starting the simulation and exporting the simulation results (which includes
loading of the results, defining the elements and variables to export and running the
export process) are manual processes that are invoked via the InfoWorks GUI. The
same holds true for the import of simulated CSO into the GERRIS database and for the
invoking of the HYDRAX and QSim simulations via the GERRIS GUI.

It would be an improvement if the different steps to be performed could be defined in
terms of a ‘batch file’ and if the corresponding processes could be run automatically. As
long as the number of simulations to be carried out is small, the advantage of automated
processing does not carry weight compared to a manual procedure. However, for future
applications, which may take into account many repeated simulation runs, an automatic
approach could become indispensable.

Until now, at the interface between InfoWorks CS and HYDRAX/QSim/GERRIS, a
manual processing of the result files produced by InfoWorks is necessary (see last
section, Step 3). The CSV files exported from InfoWorks CS have been joined into Excel
files. The Excel files were modified (e.g. applying thresholds, reducing temporal
resolution by averaging rows, addition and renaming of columns, etc.) before they were
imported by the GERRIS Import Assistant. That kind of manual creation of input data is
error-prone. The correctness of produced data highly depends on the person who edits
the data. Automating the transformation of data to be transferred would not only speed
up the exchange process but also avoid accidental typing errors.

Sequential coupling of models does not take into account potential feedbacks of the data
receiving model (here: river model) back to the data providing model (here: sewer
model). In the real system, such a feedback could be given for example if water levels in
the river, which are elevated due to CSO, cause backwater in the sewer and thus have
an effect on the overflow behaviour. However, for the Berlin system (Stadtspree) there is
no relevant physical feedback that needs to be taken into account. Another type of
feedback could become necessary for the investigation of more elaborated control
strategies, which, for example, control pumps or other elements in the sewer system
according to water quality parameters in the river. For the type of simulations that have
been carried out so far, the sequential, uni-directional approach is not assumed to have
a negative effect on the quality of simulation results.

9

Chapter 4: Possible Model Coupling Scenarios

In the last chapter, the current modelling practice being applied in Berlin, has been
introduced. Drawbacks of that practice have been discussed. Here, two different
theoretic modelling scenarios, in which some of these drawbacks are overcome and
which may be applied in future, are presented. First, in section 4.1, a solution is
discussed, in which all involved models and tools communicate and exchange data via
the OpenMI (see 2.2.1). That scenario assumes that all required models and evaluation
tools are available in the form of OpenMI-compliant components. Second, in section 4.2,
a scenario is presented, in which the models are not accessed through the standardized
OpenMI interface but through specific Application Programming Interfaces (APIs, see
2.2.2). That solution requires the existence of such APIs for the models and additional
tools involved.

Of the model software used to date, only InfoWorks CS supports the OpenMI. Also, that
software is the only one of the incorporated programs which offers an API. This means
that none of the two presented scenarios is feasible at present. However, they could
become feasible if the desired interfaces were implemented in the corresponding
software.

Assuming that the software provided will be used unchanged in future and thus, none of
the presented scenarios will become practicable, there are other alternatives that may
improve efficiency and quality of the modelling practice. The non-existence of
appropriate interfaces may prevent the automation of data exchange between models.
However, even if data import, simulation and data export need to be invoked manually,
the manual data exchange may be supported by the use of appropriate converter
programs. These programs may be applied in order to transform simulated data that has
been exported from one model program into the format that is expected by the model to
which that data is going to be imported. With regards to the current modelling practice
(see 3.1), such a tool may substitute the manual creation of Excel input files as it is
needed for import to the GERRIS program (Step 3 in 3.1). The converter tool could be
realized in the form of a configurable command line program. Being started from the
Windows command prompt and given the path to the input files, that program may
perform data transformations according to the given specification and produce an output
file that can be imported into GERRIS. Such a utility is currently being developed at
KWB.

4.1 Fully OpenMI Integrated Model

Figure 3 demonstrates the modelling scenario in which all models and tools are linked
via the OpenMI. That scenario assumes that all models and additional tools (e.g.
Database, Calibration Controller, Statistical Analysis, Uncertainty and Sensitivity
Analysis) are available in the form of corresponding OpenMI-compliant components (see
2.2.1). These components, which in Figure 3 are symbolised by blue ellipses, may have
been received by ‘wrapping’ existing model softwares (white ellipses; see also
Chapter 6). To keep more general, the components in Figure 3 are labelled with their
type and not with concrete model names.

The integrated system of OpenMI components could be configured either in a ‘hard-
coded’ way or by use of a Configuration Editor as it is for example developed and

10

distributed by the OpenMI Association Technical Committee (OATC). For a hard-coded
system, the modeller needs to have access to a programming environment in which
software can be written in a programming language that is able to access the OpenMI
components. The modeller is then in the role of a programmer. Loading components and
establishing links between the components are performed by means of language-specific
commands and by calling the OpenMI-specific methods on the components. By contrast,
using an application like the OATC Configuration Editor (see also 5.2.1) may facilitate
the configuration of the integrated model system. The editor offers a graphical user
interface (GUI) that allows to interactively define the model components to be used and
the links to be established between them. Running a hard-coded system is done by
compiling and running the corresponding self-written piece of software. Using a
configuration editor, however, lets you start the simulation of the integrated system from
within the GUI.

The GUI approach allows non-programmers to modify the linking of models while the
hard-coded way prevents non-programmers to modify the model linking or even to
include new components.

Figure 3: The OpenMI approach for linking models and tools within MIA-CSO. Figure adapted

from (Gijsbers et al., 2007b).

In the integrated sewer/river system, the three models (rainfall runoff and sewer, river
hydraulics and river quality) are linked in a chain.

In OpenMI terminology, a link defines what (which quantity, e.g. flow, level, mass
concentration of BOD) is exchanged where (at which locations) and between which
models (data requesting target model and data providing source model).

In the existing case, there are links for the quantity ‘flow’ between the sewer and the river
hydraulics model and links for flow and for water level between the river hydraulics and
the river quality model. Furthermore, there need to be direct links between the sewer and
the river quality model which transfer the water quality data (mass concentrations of
suspended solids, BOD, COD, etc.). For purposes of clarity, the latter mentioned links

11

are not indicated in Figure 3. Assuming that there are neither feedbacks between river
quality and river hydraulics nor feedbacks between river hydraulics and the sewer
system, there are no links directed ‘backwards’. However, the OpenMI would enable
these feedback links.

Concerning the geographical locations that are linked, for example each link between
sewer and river model may connect one (outlet) node of the sewer model to exactly one
corresponding node of the river model. Such a direct one-to-one relationship between
locations (sewer nodes to river nodes) may not be possible due to different spatial
representations (e.g. points versus lines versus grids, one dimensional versus two
dimensional, etc.) being applied in the models to be linked. The OpenMI specification is
designated to account for these differences; however, the needed conversion functions
(e.g. aggregation, averaging, interpolation, translation between different reference
systems) need to be envisaged and implemented in the concerned model components.

For each quantity represented by a link, the dimension of the quantity (e.g. length, time,
mass, velocity = length per time) and a conversion factor to SI units (SI = Système
International d'unités) must be given. Thus, the OpenMI can account for different units of
the same dimension (e.g. feet to metres, both being units of the dimension ‘length’).
However, the OpenMI does not release the modeller from conscientiously checking the
meaning of the different quantities in the different models. Further transformations
between quantities may become necessary; it is the responsibility of the model
developer to offer these types of transformations in terms of so called data operations
which the model component may provide for its different quantities.

Considering the three model components, an overall simulation would be performed
either by a simple trigger component or by a superior controlling component (like the
component for ‘Uncertainty and Sensitivity Analysis’ in Figure 3). The last model in the
chain (here the river quality model) would be requested (dotted arrows in Figure 3) to
deliver the water quality for the last timestep of the intended simulation period. The water
quality model would start its calculations at the beginning of its simulation time horizon.
Each time the model needs a value of a quantity that is linked to another model, it
requests that value for the actual timestep from the corresponding model and waits until
that model delivers the value (solid arrows in Figure 3). So the river hydraulics model
would be requested to deliver water levels and flows that are valid for the first point in
time. The river hydraulics model on his part would start its calculations at the beginning
of its own time horizon until it reaches the requested point in time. On that way it needs
the information about possible CSO discharging into the river. It requests the CSO flows
from the sewer model which on his part would start its calculation until the requested
point in time is reached. The sewer model would then stop and wait for the next request.

A strength of the OpenMI is that it is able to link models which advance in time with
different timesteps. Therefore, the OpenMI interface requires the models to be always
able to deliver a value for a requested quantity at any requested point in time. The model
is responsible to implement the interpolation or extrapolation of available values in order
to return a ‘best guess’ for the value at the requested point in time.

Summarized, the request and reply mechanism of OpenMI allows for data exchange on
a timestep basis and thus realizes the parallel model coupling approach. All model
components run quasi-simultaneously, i.e. only one model runs at a time but altogether,
they follow the same time bar. The OpenMI is designated for temporal and spatial
mapping. Default implementations of the algorithms needed to perform these mappings

12

are provided by the OpenMI Association. However, it is the responsibility of the model
developer to implement these algorithms or more sophisticated mapping procedures as
needed for the specific model software.

In theory, the additional tasks being planned within MIA-CSO (aid in model calibration,
statistical analysis of model results, uncertainty and sensitivity analysis) can also be
performed by use of OpenMI. For model calibration, an OpenMI component (‘Calibration
Controller’ in Figure 3) could be provided that on the one hand reads observed data from
a database and on the other hand requests simulation results from the model to be
calibrated (for example ‘Rainfall Runoff/Sewer Model’ in Figure 3). Following the OpenMI
concept, the model to be calibrated would on his part ask the calibration controller for a
new parameter set to apply. The controller would deliver a parameter that, according to
already tested parameter sets, it guesses to give a better match between simulated and
observed values. Based on the given parameters, the model to be calibrated would run a
simulation and return the simulation results that are requested by the controller. The
controller would judge the fitness of the parameter set and prepare a new parameter set
to be tested next.

In a similar way, uncertainty and sensitivity analysis could be performed by linking a
corresponding OpenMI component on the one hand to the model to which changes in
parameter or input data shall be applied and, on the other hand, to the last model in the
chain of which the final simulation results are requested.

Comparatively easy should it be to develop an OpenMI component for statistical analysis
of the simulated water quality conditions in the river. Such a component would regularly
request the variables to be analysed from the river quality model and update the
statistics which could be saved internally or even exposed to other components via the
OpenMI.

An OpenMI configuration as described above (sewer modelling, river hydraulics and river
quality plus additional data processing tools) is highly complex. As far as the author
knows, such complex systems are not yet reported in the scientific literature. At least the
example of a calibration controller is explicitly mentioned in the OpenMI documentation
series (Gijsbers et al., 2007a).

Furthermore, the feasibility of an OpenMI scenario as described here strongly depends
on the availability of OpenMI components as well as the willingness of model developers
to improve their actual OpenMI implementations.

For InfoWorks, which out of the three models intended for use in MIA-CSO is currently
the only one being OpenMI-compliant, the actual possibilities and restrictions of the
OpenMI implementation are highlighted in Chapter 5.

4.2 Using Available APIs

As already anticipated in the previous section, a fully OpenMI integrated modelling
system does not seem to be feasible within near future. Indeed, yet few modelling
software programs do support the OpenMI, being a standardized way for model
coupling. However, there are more programs available that can be accessed through
(software-specific) Application Programming Interfaces (APIs; see 2.2.2) that also may
be used to automate model runs and data exchange between models. Moreover, it is
easier for software developers to give access to parts of an existing software in the form
of an API than to offer a standardized interface like the OpenMI. While the former only

13

needs to build a generically accessible library out of parts of the software, the latter may
require profound structural changes of the software involved (cf. Chapter 6). A drawback
of model linking by use of API is that the links built between two models via their API are
specific to these two models. If the second model has to be replaced by another one,
specific new developments will be required.

This section describes a general approach that uses APIs for model and tool integration
within MIA-CSO. API is not a standard but just a technology to make parts of an existing
software accessible to other software without the need for the existing software to reveal
its source code. Thus, the possible options for model and tool integration depend on
whether the used software programs provide access through APIs and, if so, which
functions (methods) of the software are made available.

As mentioned in 2.1, of the modelling software intended for use in MIA-CSO, only
InfoWorks CS is equipped with an API. The results of a detailed investigation of that API
are described in Chapter 7. Here, some of the gathered information are anticipated,
while assumptions are made about possible APIs that the other programs (which so far
do not offer access through an API) could possibly be able to provide in future.

Often, an API gives access to those functions of a software that are normally initiated by
pressing a button or choosing a menu item in the Graphical User Interface (GUI) of the
software. This holds true for the InfoWorks API: among others, the API offers methods
for importing different kinds of data (like networks, rainfall data, etc.), for setting up and
starting a simulation run and for exporting the results of completed simulations. However,
the API does neither give direct access to most of the internal variables like the
properties of the network nor does it allow to calculate intermediate model states; only
complete runs of pre-defined simulations can be triggered through the API.

Considering these restrictions, which are assumed to be valid also for other modelling
programs, the following procedure may be applied for running an integrated model:

1. Prepare all models (as far as invariant data like sewer network, river network or
parameters that are assumed to be constant during simulation are concerned) in
the ‘normal’ way by use of the particular application’s GUI.

2. Perform the sewer simulation by calling the appropriate API methods (offered by
the sewer model) for:

a. loading the sewer simulation as prepared in 1.,

b. running the prepared simulation and

c. exporting the simulation results to files.

3. Programmatically read the results exported in 2.c. and transform them into the
format that is requested by the next model in the chain (river hydraulics).

4. Perform the river hydraulics simulation by calling the appropriate API methods
(assumed to be offered by the river hydraulics model) for:

a. loading the river hydraulics simulation as prepared in 1.,

b. importing the boundary conditions regarding CSO discharges by reading
the files produced in 3.,

c. running the river hydraulics model and

d. exporting the results to files containing flows and levels along the river.

14

5. Programmatically read the CSO quality parameters exported in 2.c. and the
hydraulics results exported in 4.d. and transform them into the format that is
requested by the next model in the chain (river quality).

6. Perform the river quality simulation by calling the appropriate API methods
(assumed to be offered by the river quality model) for:

a. loading the river quality simulation as prepared in 1.,

b. importing the boundary conditions regarding river hydraulics (flows, levels)
and CSO quality data by reading the files produced in 5. and

c. running the river quality model.

The theoretical procedure described above is kept very general. It treats the integrated
problem modularly and distinguishes the three models for sewer system, river hydraulics
and river quality. In case of the specific river modelling software HYDRAX and QSim
(see 2.1.4), however, the link between these two models has already been realized in
the form of the software GERRIS (see 2.1.4). Assuming that the program GERRIS is
made accessible via an API, step 3. of the above procedure could be changed in such a
manner that the results from 2.c. are transformed programmatically into the format that is
expected by the ‘import assistant’ of the GERRIS software. Steps 4. through 6. could
then be reduced to:

4*. Perform the river simulation (consisting of both, river hydraulics and river quality)
by calling the appropriate API methods (assumed to be offered by GERRIS) for:

a. loading the river simulation as prepared in 1.,

b. importing the boundary conditions regarding CSO discharges (flows,
levels) by calling the ‘import assistant’ on the file produced in 3.,

c. running the HYDRAX simulation,

d. defining the HYDRAX results as hydraulic boundary conditions for QSim,

e. importing the boundary conditions regarding CSO discharges (quality
parameters) by calling the ‘import assistant’ on the file produced in 3. and

f. running the QSim simulation.

Finally, the results of the river quality simulation could be viewed and judged within the
GERRIS user interface.

Compared to the OpenMI scenario (see 4.1), in this API scenario the models are not
processed in parallel, but sequentially. However, model preparation, data import, start of
simulation and data export are automated using the provided API functionality. A
superior software needs to be developed in order to implement the above procedure in
terms of the corresponding API calls. That controlling software would need to keep track
of all the particularities of the used model software and their APIs. The developer of that
software would need to know about the data formats that are both, expected by and
produced by the different software. The software product would be specific for the actual
case and for the models (and their APIs) involved.

The additional tasks (calibration, uncertainty and sensitivity analysis, statistical analysis)
could also be performed by means of API access. The first two of these tasks rely on the
ability to change specific model parameters. As it is the case for InfoWorks CS, the API
may not give direct access to these parameters. In that case, and if the API allowed for

15

import and export of model parameters, the modification of parameters could be
performed indirectly by

- exporting the model parameters to a file,

- changing the model parameters in the file and

- reimporting the (changed) model parameters into the model software again.

For uncertainty and sensitivity analysis, the software SimLab, which is freely available for
non-commercial use (see http://simlab.jrc.ec.europa.eu) could be applied.
That software is distributed in terms of libraries that can be accessed through an API.

16

Chapter 5: Applicability of the OpenMI: Testing of existing

components

5.1 Objectives and Strategy

In order to get first experiences with OpenMI, some practical tests with simple scenarios
have been carried out. For all tests, the OpenMI Configuration Editor (available from the
OpenMI distribution) has been used for the setup of the model.

The different considered scenarios are:

- Scenario A: Running an InfoWorks CS component alone, only linked to a trigger.

- Scenario B: Linking two different InfoWorks CS components and running the
linked system.

- Scenario C: Linking an InfoWorks CS component to another OpenMI-compliant
component and running the linked system.

In the following, some preconditions needed to perform the tests are explained in section
5.2. Then, the above scenarios are discussed in the sections 5.3 through 5.5. Finally,
section 5.6 summarizes the results obtained.

5.2 Preconditions

Section 5.2.1 briefly describes the OpenMI Configuration Editor, which is applied for all
test scenarios. Then, section 5.2.2 explains how the InfoWorks OpenMI components,
that are needed for the tests, are generated.

5.2.1 Using the OpenMI Configuration Editor

The OATC Configuration Editor is a program provided by the Technical Committee of the
OpenMI Association (OATC). Equipped with a graphical user interface, the program
allows to create, load, save and run OpenMI configurations. An OpenMI configuration is
the description of the OpenMI-linked model system. It contains information about which
model components take part in the system and about how they are linked. The
Configuration Editor visualizes the configured system by means of rectangles
(representing the OpenMI components) and arrows (representing the links between the
components). Figure 4 shows how the InfoWorks CS component is loaded into the
OpenMI Configuration Editor and how the component is represented graphically.

If ‘Composition � Add Model’ is selected (left in Figure 4), the user is asked to choose a
file with the extension ‘.omi’. That file contains a description of the OpenMI component to
be loaded (see the second requirement for OpenMI-compliance in 6.1.1). The next
section describes how the required .omi-file can be obtained for an InfoWorks CS model
that is planned to be placed within the OpenMI configuration (right in Figure 4).

In fact, an OpenMI component, described by an .omi-file, does not only represent the
model itself (e.g. specific InfoWorks CS sewer network) but it also defines start time and
duration of the model run as well as the specific boundary conditions (e.g. waste water
conditions, rainfall data) to be applied. In InfoWorks, this model setup is referred to as
the ‘Hydraulic Run’ (cf. 5.2.2). The same model component (identified by a unique model
ID in the .omi-file) cannot be loaded twice into the Configuration editor. Otherwise, the

17

exception ‘Composition already contains model with ModelID …’ occurs. However, it is
possible to load for example two Infoworks components that represent different
‘Hydraulic Runs’.

Figure 4. Loading an OpenMI component into the OpenMI Configuration Editor. After ‘Add Model’
has been chosen (left) and an .omi-file has been selected, the component is shown in the form of

a yellow rectangle (right).

All reported tests were undertaken with InfoWorks 9.5 and OATC Configuration Editor
1.4.0.0. These versions are compatible (see 5.6.1).

5.2.2 Creating OpenMI components from InfoWorks CS models

An OpenMI-compliant InfoWorks CS component is created by an export process. In the
InfoWorks CS application, the option ‘Export to OpenMI’ needs to be chosen when a
Hydraulic Run is scheduled (see item one in Figure 6). Then, pressing the
‘Run Simulations’ button does not start the simulation but exports an OpenMI
component. The exported component represents the specified simulation run. In fact, the
OpenMI export process produces an .omi-file that describes which model engine needs
to be populated with which kind of data in order to represent the currently specified Run.

When exporting to OpenMI, an input dialog appears that allows to specify the export
(see Figure 5).

Figure 5: OpenMI export dialog. Model ID, model description and the locations of the files to be

created (.omi-file and logfile) can be specified.

The specification in the ‘Schedule Hydraulic Run’ also determines, which input exchange
items the exported OpenMI component will offer. It has been found out that the exported
OpenMI component will only then offer input exchange items for

18

- flows, if the Inflow property has been set with an appropriate Inflow object, and for

- levels, if the Level property has been set with an appropriate Level object (see
Figure 6).

Figure 6. ‘Schedule Hydraulic Run’ dialog in InfoWorks CS. The checkbox ‘Export to OpenMI’
needs to be ticked if an OpenMI component shall be exported (1). Inflows need to be specified

(2), if the OpenMI component shall contain input exchange items for flow. Levels need to be
specified (3), if the OpenMI component shall contain input exchange items for levels.

In InfoWorks, Inflow and Level boundaries are given in terms of tables (Figure 7, left).
The columns of the tables represent the network nodes, for which inflows or levels,
respectively, are defined. Only for these nodes, corresponding input exchange items for
Inflow and Level, respectively, will be available in the exported OpenMI component
(Figure 7, right).

Figure 7. Representation of Inflow and Level data in InfoWorks (tables on the left) and the

corresponding input exchange items as they are shown in the ‘Model properties’ dialog of the
OpenMI Configuration Editor (right).

It could be expected that specifying other ‘Event Inputs’ in the ‘Schedule Hydraulic Run’
dialog would accordingly produce input exchange items for the corresponding types (e.g.
Waste Water, Trade Waste, etc.). However, this is not the case. On request,
Wallingford’s support team confirmed that the current OpenMI implementation in
InfoWorks only allows for flows and water levels as the possible input quantities.

19

5.3 Scenario A: Single InfoWorks CS component

Running a single InfoWorks CS component, being only connected to a Trigger
component (configuration as shown in Figure 8 and Figure 9) worked as expected.

Figure 8: InfoWorks CS componend 'run_OMI', only linked to the OpenMI standard Trigger

component in the OpenMI Configuration Editor.

The simulation results produced by the InfoWorks component (‘run_OMI’ in Figure 8)
were exactly the same as the results which were produced when the scheduled Run,
from which the OpenMI component was exported (see 5.2.2), was invoked in the usual
manner from within the InfoWorks GUI.

Figure 9: Configuration of the link between the InfoWorks CS component and the Trigger
component. The trigger requests the flow at the downstream (DS) end of link ‘15153E02.1’.

If the InfoWorks CS model is run as an OpenMI component, the simulation does not
necessarily perform until the end of the component’s time horizon. It runs just as long as
the time, at which the trigger is invoked, is not reached. Triggering the component at
earlier points in time leads to earlier endings of the simulation.

20

5.4 Scenario B: Linking two different InfoWorks CS components

In the second scenario, two different OpenMI components of the same model type
(InfoWorks CS) were coupled. Therefore, an existing InfoWorks CS model network was
divided into a northern and a southern part (see Figure 10).

In the original model, both systems were connected by exactly one conduit (conduit
‘16154312.1’). The downstream node of that conduit (node ‘16156306’) remained in both
sub-models. In the northern network, that node was transformed into an outfall. In the
southern network, the same node was specified in such a way that it accepted a direct
Inflow. A corresponding Inflow object was created. For a given list of nodes, the Inflow
object specifies the corresponding timeseries of direct inflows. In this case, the
timeseries were filled with zero values (see right sub-window in Figure 10). The Inflow
object is needed for the OpenMI export procedure. That procedure reads the node
identifiers from the Inflow object in order to know, for which nodes the OpenMI
component shall provide corresponding input exchange items (cf. 5.2.2).

Out of both, the northern and the southern network, OpenMI components were created
by means of the OpenMI export procedure (see 5.2.2). Both Run specifications, on which
the OpenMI exports are based, were configured equally except for the network to be
simulated: The Runs were configured such that they simulate the same rainfall event and
the same waste water conditions over the same time horizon.

Figure 10: InfoWorks CS model network representing a Berlin catchment, divided into a northern
(upper network window) and a southern sub-network (lower network window).

In the Configuration Editor, the exported OpenMI components representing the northern
and southern InfoWorks CS sub-models, respectively, were linked as shown in
Figure 11. The connection between the two components has been configured in the

21

desired way (see Figure 12). A Trigger component was connected to the south
component.

Figure 11: OpenMI-linked system of two OpenMI components of the same type (InfoWorks CS) in

the OATC Configuration Editor. The component ‘run_OMI_north’ provides inflow into the
component ‘run_OMI_south’. The latter component is triggered.

The configured OpenMI system was run with the trigger being invoked at the end of the
simulation time horizon, being the same for both models (see above). The simulation
performed successfully. The simulation results have been analyzed within the
InfoWorks CS GUI. For the associated figures, see Appendix G. First, the outflows
leaving the northern sub-network have been compared to the inflows that, through
OpenMI, were transferred to the southern sub-network (see Figure 27 in Appendix G).

Figure 12: Dialog box within the OATC Configuration Editor showing the properties of the
connection between the components ‘run_OMI_north’ and ‘run_OMI_south’. Flow in the

downstream (DS) end of conduit ‘16154312.1’ in the northern sub-network is used as inflow to
node ‘16156306’ in the southern sub-network (cf. Figure 11).

As expected, it was observed that the hydrographs of both, outflows from the north and
inflows to the south, matched perfectly. This means that data transfer through the
OpenMI connection between the northern and the southern sub-model was carried out
correctly.

22

Next, it was investigated if the simulation results obtained by the OpenMI-linked system
(case ‘OPENMI’) were the same as the results that were calculated for the original, entire
InfoWorks CS network (case ‘ORIG’). Therefore, the overflows that are released into the
receiving river at one outlet of the southern sub-network have been compared for the two
cases (see Figure 13).

Figure 13: Overflow hydrographs simulated in InfoWorks for the entire network (blue line) and

simulated in the OPENMI scenario without feedback between southern and northern sub-network
(green line).

At the outlet to the river and also in the last sewer sections upstream, deviations
between the overflow hydrographs could be observed (see Appendix G, Figure 28).
Tracking the sewer system further upstream (see Appendix G, Figure 29) shows that the
deviation at the end of the sewer system results from a superposition of even slighter
deviations in the upstream sewer sections. The flow deviations seem to accumulate
along the sewer.

The differences could result from backwater effects at the connection between the two
sub-networks. These are not taken into account in the OPENMI scenario as there, only a
unidirectional link between the northern and the southern model is established. As the
OpenMI concept allows for bi-directional links, a backward link from the southern to the
northern model was added to the OPENMI scenario. Via that link, the level at the entry
node of the southern model is fed back into the outlet node of the northern model. In
order to make the required input exchange item for levels available in the OpenMI
component of the northern model, it was necessary to export a new OpenMI component
from an accordingly configured hydraulic run in InfoWorks (cf. 5.2.2). Running the
modified OPENMI scenario resulted in a different hydrograph at the outlet of the
southern sub-network, which, again, was compared to the ORIG hydrograph produced
by InfoWorks for the entire network (Figure 14).

23

Figure 14: Overflow hydrographs simulated in InfoWorks for the entire network (case ‘ORIG’) and

simulated in the ‘OPENMI’ case with feedback of water levels between southern and northern
sub-network. The hydrographs match almost perfectly.

The remaining very small differences of calculated flows (hardly detectable in Figure 14)
could result from different timesteps that are calculated within the ORIG simulation
compared to the OPENMI simulations, in which the simulated networks are smaller. The
more complex a network is, and the more elements (nodes, links, etc.) it comprises, the
more probable it is that somewhere in the network the approximation procedure that is
applied in order to solve the St. Venant equations does not deliver satisfying results. In
that case, the timestep is decreased in order to achieve a better approximation. It is
assumed that in the more complex network, more intermediate timesteps are calculated,
which finally leads to a higher accuracy in comparison to a less complex network.

5.5 Scenario C: Linking InfoWorks CS to other OpenMI components

Only few OpenMI-compliant components were found that are freely available on the
internet. One of these components is the CUAHSI-HIS component (see http://
his.cuahsi.org/hydrolink.html), provided by the Consortium of Universities for
the Advancement of Hydrologic Science (CUAHSI; http://www.cuahsi.org).

An OpenMI system was tested in which that component is linked to an InfoWorks CS
component.

The CUAHSI-HIS component does not represent a model in the classical sense. It acts
as a database, giving access to hydrologic time series, which are generated by the
WaterOneFlow web services, hosted by the CUAHSI. The time series are stored in a
specific format (WaterML format), which is a type of XML (Extensible Markup Language)
format. The CUAHSI-HIS component complies to the OpenMI 1.4 standard (cf. 5.6.1).

In the test scenario, an example WaterML file was used (downloaded from
http://code.google.com/p/cuahsi-his-openmi-component/downloads/

list). Based on this file, the CUAHSI-HIS component offers exactly one exchange item
for flow (‘flow_exchange_item’, see Figure 15). According to Figure 16 and Figure 17,
the CUAHSI-HIS component was linked to the InfoWorks CS component which was

24

already used in Scenario B (see 5.4), where it represented the southern sub-system of a
sewer network. The InfoWorks CS component was triggered. In that way, the OpenMI
configuration should have performed as follows: The trigger requests the flow through
any conduit in the InfoWorks component, which, in turn, requests the direct inflows into
its boundary node from the CUAHSI-HIS component. The CUAHSI-HIS component
reads the requested flow data from the WaterML file.

Figure 15: Model properties of the CUAHSI-HIS component, shown in the OATC Configuration
Editor. The component offers the ‘flow_exchange_item’ being the only output exchange item.

When trying to run the OpenMI system as configured, the warning ‘Model time horizons
don’t overlap’ is issued. The reason for this is that the CUAHSI-HIS component does not
expose the correct time horizon that is defined in the actual WaterML file. Instead, the
component claims the date ’17/11/1958’ to be both, the start and the end of its time
horizon (see Figure 15). In OpenMI, dates are represented as floating point numbers,
where zero represents the above date (’17/11/1958’). Although the OpenMI system could
be started in spite of the warning about non-overlapping time horizons, the simulation
failed. It is possible that the failure was due to the component’s inability to interpret dates
correctly. Possibly, the reason for this lies in different regional settings (e.g. English
versus German) that different programs may account for or not (cf. 5.6.1).

25

Figure 16: OpenMI configuration with a CUAHSI-HIS component providing inflow to an

InfoWorks CS component in the OATC Configuration Editor.

The main conclusion that can be drawn from the scenario considered here is that, to
make OpenMI work, it is not sufficient for the model components to comply to the
OpenMI standard. Rather, it is essential that the methods, that the OpenMI components
are required to offer, are implemented by the model components in the correct manner.

Figure 17: Properties of the connection between CUAHSI-HIS and InfoWorks CS component in
the OpenMI configuration shown in Figure 16.

The OpenMI Association Technical Committee (OATC) provides simple demo models
which may be used in order to create further simple test scenarios. Appendix H contains
an overview of these models which represent different environmental domains (e.g. river,
groundwater).

Concerning the coupling between InfoWorks CS and InfoWorks RS (the river modelling
module of InfoWorks), already many use cases are reported. An extensive overview is
given in the KWB report “Literature Review on the OpenMI” (Sonnenberg, 2008).

5.6 Results

Within this section, errors due to compatibility reasons, which have been occurred during
the tests, are reported and appropriate solutions are given (see 5.6.1). The limitations of
the InfoWorks’ OpenMI implementation, which have been encountered during the tests
or which are reported in literature, are summarized in 5.6.2.

26

5.6.1 Compatibility issues

Generally, when working with OpenMI components, it is important to take care of
possibly different supported versions of the OpenMI standard. The loading of a model
component (the corresponding .omi-file) into the OpenMI Configuration Editor fails if
model and editor support different versions of the OpenMI standard. In that case, the
Configuration Editor will throw an exception or get blocked and not respond any more.

The current version of the OpenMI Configuration Editor (1.4.0.0) is based on the OpenMI
specification in version 1.4. InfoWorks 8.5, which was first used, supports the OpenMI
standard in version 1.0 (see Table 1). There were two possibilities to solve the
compatibility problem:

1. Use a former version of the Configuration Editor (OmiEd 1.0).

2. Use a newer version of InfoWorks (at least 9.5) for creating OpenMI components
that comply with the OATC Configuration Editor 1.4.

Within this study, the second solution was chosen. From testing different program
versions of OpenMI-compliant models with different versions of the OpenMI
Configuration Editor, the compatibilities given in Table 1 were found.

Table 1: Versions of the OpenMI standard that are supported/required by some tested OpenMI-
compliant model engines.

OpenMI Model Engine Supported/Required OpenMI version

InfoWorks CS 8.5 1.0

InfoWorks CS 9.5 1.4

CUAHSI-HIS 1.4

There seem to be compatibility problems concerning different regional cultures (English
versus German). As shown in Figure 18, the ‘Model properties’ dialog of the loaded
InfoWorks component displayed the Dimensions property in the ‘Quantity properties’
section incorrectly (dimension of length = -3000000, dimension of mass = 100000).
Changing Windows’ regional settings from German to English (Great Britain), led to
correct dimensions (dimension of length = -3, dimension of mass = 1).

27

Figure 18: Model properties of the InfoWorks CS component as they are shown in the OpenMI

Configuration Editor. Dimensions are incorrect due to incompatibilities of regional cultures. Input
Exchange Items are not available as no Inflows and no Levels were configured in the

corresponding scheduled run (see 5.2.2).

5.6.2 Limitations of the OpenMI implementation in InfoWorks CS

It depends on the program version of InfoWorks which version of the OpenMI standard is
supported by the corresponding OpenMI-compliant InfoWorks components. Info-
Works 8.5 supports OpenMI 1.0, whereas since InfoWorks 9.5 the OpenMI standard is
supported in its version 1.4 (current version in June 2009).

The InfoWorks OpenMI implementation does not give full access to the InfoWorks
model. Only the variables flow and water level are possible input items of the model
component (see 5.2.2). For example, it is neither intended to provide rainfall data nor
e.g. Waste Water or Trade Waste specifications via the OpenMI to an InfoWorks CS
component.

In particular, the InfoWorks implementation of the OpenMI standard does not give
access to parameters of the rainfall runoff and sewer model (e.g. runoff coefficient, runoff
routing factor, etc.). The modification of model parameters would be needed for model
calibration purposes or sensitivity and uncertainty analysis. In a personal contact, the
Wallingford support team recommends the use of the InfoWorks API (see Chapter 7) as
long as the current OpenMI implementation of InfoWorks does not support access to
model parameters via the OpenMI. Wallingford is open for a discussion on future
improvements of the OpenMI implementation of InfoWorks (personal communication with
Wallingford Software Ltd.).

The following further OpenMI-related concerns about InfoWorks (CS and RS) are
reported in literature (openmi-life.org, 2007a; b):

- Increasing the timestep to speed up simulations of long dry weather periods (up
to 32 times the normal timestep) is at present not yet supported by the OpenMI
implementation of InfoWorks (openmi-life.org, 2007a).

- For the flood exchange between InfoWorks CS and InfoWorks RS (flood volume
at CS nodes as RS Q,t boundary at RS boundary node), it may be necessary to
make a few adaptations to both CS or RS to allow all the necessary transfers.

28

- Special attention must be given to the exchange of flood parameters, as this
might not be all possible in the current version of InfoWorks.

- Another possible gap is the possibility of having both open and predefined
boundaries in one and the same simulation. According to Wallingford Software
this should work.

- The OpenMI Configuration Editor does not always accept the .omi-files produced
by InfoWorks RS.

29

Chapter 6: Applicability of the OpenMI: Making existing models

OpenMI-compliant

6.1 Model Migration

The process of turning a model engine into an OpenMI-compliant component is also
referred to as ‘migration’. In order to support model developers in migrating their model
engines, the OpenMI Association disseminates a Software Development Kit (SDK). The
SDK provides software utilities that can be used to facilitate the migration process.

Referring to the structure of Book 4 in the OpenMI documentation (Gijsbers et al.,
2007a), the following sections describe the requirements for an OpenMI component
(6.1.1), introduce the recommended software design (6.1.2) and give step-by-step
instructions for the migration process (6.1.3).

6.1.1 Requirements for an OpenMI-compliant component

There are three basic requirements that an OpenMI-compliant compontent has to meet
(Gijsbers et al., 2007a):

1. The component must implement the ILinkableComponent interface, forcing the
component to provide

- attributes that allow to identify the component (id and description),

- attributes and methods that give access to the input and output exchange items,

- methods that allow to add or remove links to or from the component,

- methods that allow to perform specific model actions before and after a model run
(e.g. validation, preparation, finishing, disposure),

- a method GetValues that returns values for a given time at a given location,

- methods that enable the component to register ‘event-listeners’, to which specific
events will be sent. An example for an event is the DataChanged event, which is
‘thrown’ by a component after having answered a GetValues call from another
linked component. Events allow ‘event listeners’ to monitor the progress of the
linked system when running.

2. The finally developed component must be provided together with an XML-file (XML =
Extensible Markup Language) that, in a pre-defined manner, contains information
about where to find the component on the computer and about how to load it. That
file should have the extension ‘.omi’ and is also referred to as ‘.omi-file’.

3. The component must be able to invoke the methods mentioned first in this list in the
following sequence of specific phases:

- initialization,

- inspection and configuration,

- preparation,

- computation/execution,

- completion,

30

- disposure.

Before migrating a model to an OpenMI-compliant component, it is important to have a
precise idea of how the model will be used as an OpenMI component. Any situation, in
which the component will be linked to other components (such as other models but also
data providers, optimization or calibration tools), should be kept in mind.

It is recommended to define use cases, which describe the functionality, that the
component must provide, in detail. The use cases shall give a step-by-step description of
how the models will be used. Most important when defining use cases is that after
completion of software development, it must be unambiguously possible to determine
whether the use case is covered or not.

Based on the use cases, input and output exchange items that the model shall expose,
need to be defined. An exchange item defines what (which quantity, e.g. flow) can be
exchanged where (at which elements, e.g. nodes, river branches).

6.1.2 Wrapping concept and wrapping pattern provided in the OpenMI SDK

The OpenMI standard and the SDK are provided in the form of source code written in the
programming language C# (read: ‘C sharp’), which is based on the Windows .NET (read:
‘Dot Net’) framework (http://msdn.microsoft.com/en-gb/netframework). Thus, model
migration is best supported when the same environment is used for the development of
model components. However, most existing model engines are written in other
programming languages, such as Fortran, Pascal, C or C++ (read: ‘C plus plus’). In order
to bridge the gap between the different technologies and to minimize the number of
changes needed to be applied to the engine core, a wrapping procedure is
recommended.

Wrapping basically means to create a C# class that implements the ILinkableComponent
interface (see 6.1.1). In Figure 3 and in the following figures, the implementation of this
interface is indicated by a blue ellipsis. The wrapper class can be seen as a ‘black box’,
in which internally the model engine is accessed but which prevents the user from seeing
how that happens. All communication with the OpenMI component will take place
through the interface, that is, by accessing the specific attributes and methods. Internally,
the wrapper class will communicate with the engine core. If the engine is written in
another programming language, the wrapper class needs to know how to call the
software code in that language and it is responsible for doing these calls. Within the
wrapping process the developer needs to ‘wire’ the OpenMI interface to the engine core.
This is mainly done by translating method calls that come through the interface into
adequate calls of the specific functions provided by the model engine.

An advantage of the wrapping concept is that OpenMI-specific code can be implemented
in the wrapper class without the need to change the model core. So, the same model
core can still be used in its former, non-OpenMI context, e.g. within a stand-alone
application programmed in its own language.

A default implementation of a wrapper class is provided in the OpenMI SDK. Moreover,
the OpenMI guidelines describe a software pattern that is recommended to be used in
order to realize the wrapping (Gijsbers et al., 2007a). Software patterns generally
describe the structure of some part of software, including the participating software
modules (classes), their responsibilities, dependencies and interactions. The wrapping
pattern applied in the OpenMI SDK consists of different C# classes (see Figure 19).

31

Figure 19: Participating elements of the wrapping pattern (orange rectangle: dynamic link ibrary;
white rectangles: C# classes; blue ellipse: ILinkableComponent interface; round ‘lollipop’ symbol:

IEngine interface).

It is assumed that an existing model engine MyModelEngine, written in Fortran, is
available in the form of a Dynamic Link Library (DLL). In order to connect the engine to
the OpenMI wrapper class MyModelLinkableComponent, which implements the

ILinkableComponent interface (blue ellipsis) and thus represents the final OpenMI-
component, the design envisions three intermediate C# classes. The classes may be
seen as a set of stacked layers, which in each case use methods of the underlying
bottom layer and provide methods on a higher level of abstraction to the top layer:

- The first class MyModelEngineDLLAccess ‘knows’ how to access the functions in
the DLL via a Windows-specific interface (square ‘lollipop’ symbol in Figure 19)
and makes these functions available in the form of C# class methods.

- The second class MyModelEngineDotNetAccess uses the methods of the first
class. It performs an adaptation between calling conventions and exception
handling, which are different in Fortran and in C#. This class allows to use the
model engine functions indirectly by calling C# methods in a C# manner.

- The first two classes are specific to the model engine, i.e. they are not expected
to offer any particular, standardized method. This, however, is done by the third
layer class MyModelEngineWrapper, which at the bottom uses the methods of
the second class and on top (or rather left in Figure 19) provides a standardized
interface (round ‘lollipop’ symbol), namely the IEngine interface. The actual
wrapper class MyModelLinkableComponent finally accesses the model engine
through that last mentioned interface.

The OpenMI standard puts a lot of responsibilities on OpenMI components. An OpenMI
component must always be able to deliver values if its GetValues method is called. The
call may refer to a point in time which is out of the current scope of the component’s
simulation progress. It may also refer to a location which does not correspond to the own
inner spatial representation. Therefore, the wrapper class needs to offer the following
features, of which basic implementations exist in the base wrapper class provided in the
OpenMI SDK (Gijsbers et al., 2007a):

- Buffering,

- Temporal interpolation and extrapolation,

- Spatial operations,

32

- Book-keeping of links from and to the component,

- Event-handling.

6.1.3 Model migration in seven steps

The OpenMI documentation series describes the model migration process as a seven-
step procedure, which, in brief, is given here. As Figure 20 illustrates, each step (number
in yellow circle) corresponds to one or more elements of the wrapping pattern described
in the last section. Exemplarily, the documentation contains a description of how the
step-by-step procedure was applied to a simple model, the ‘Simple River’ model
(Gijsbers et al., 2007a).

Figure 20: Overview of steps that are performed in order to apply the wrapping pattern.

Step 1: Changing the engine core

In a stand-alone model application, the model engine often exists in the form of an
executable file (EXE). The internals of an EXE cannot be accessed from other software
components as it is needed for OpenMI. For maintenance reasons it should be the aim
that one and the same engine file can be used by both, the OpenMI component and the
stand-alone model application. Therefore it is recommended to compile the engine into a
Dynamic Link Library (DLL) instead of an EXE. The DLL allows for external access. The
aforementioned aim can then be achieved by providing a DLL-function RunSimulation
that performs the whole simulation process that beforehand was realized within the EXE.
A new executable application can then be built that does no more than calling the
RunSimulation function of the DLL. Figure 21 illustrates the situation described.

In order to make the SDK helper classes applicable, the DLL engine needs to be
structured in such a way that it offers the following functions:

- Initialize (Open files and populate the engine with initial data),

- PerformTimeStep,

- Finish (Close files),

- Dispose (Free memory).

33

Figure 21: Separation of of model engine (DLL) from executable stand-alone-application (EXE).

The RunSimulation function shall perform a whole simulation by calling the Initialize
function, then repeatedly calling the PerformTimeStep function until the simulation has
completed, and finally calling the Finish and Dispose functions. If the engine does not
already follow this structure, it needs to be re-structured accordingly.

Step 2: Creating the .NET assemblies

Having restructured the engine and having made the engine functions available as a
DLL, the C# wrapper classes (see 6.1.2) can be created. The .NET environment and the
OpenMI SDK need to be loaded (both freely available on the internet). Let the actual
model to be migrated be ‘MyModel’. Following the recommended naming convention, the
classes to be created are (cf. Figure 19):

- MyModelEngineDLLAccess (to be implemented in Step 3),

- MyModelEngineDotNetAccess (to be implemented in Step 4),

- MyModelEngineWrapper (to be implemented in Step 5),

- MyModelLinkableComponent (to be implemented in Step 6).

The created classes may be seen as skeletons, which still need to be implemented, i.e.
filled with functionality (see the following steps). The wrapper class MyModel-
LinkableComponent, which finally represents the OpenMI component, shall inherit from
the predefined LinkableEngine class, which is part of the wrapper package in the SDK.
By doing so, the wrapper gets a default implementation. In object oriented programming,
inheritance refers to making properties and methods of a parent class available to an
inheriting child class.

All created classes shall be compiled into one .NET assembly. An Assembly is the .NET-
specific kind of a software library. It is recommended to create corresponding test
classes in a separate assembly.

Step 3: Accessing the functions in the engine core

Within the third step, the MyModelDLLAccess class (created in step 2) is implemented.
This class will make a one-to-one conversion of all exported functions in the engine core

34

to public .NET methods. The specific implementation depends on the programming
language and the compiler that has been used to produce the DLL. The OpenMI
document series gives an example for accessing a Fortran DLL (Gijsbers et al., 2007a).

Step 4: Implementing MyModelEngineDotNetAccess

Within the fourth step, the MyModelEngineDotNetAccess class (created in step 2) is
implemented. This class has two purposes: to change the calling conventions to C#
conventions and to change error messages into .NET exceptions:

- The different treatment of parameters and return values of functions (call-by-
value versus call-by-reference) in C# and other languages like Fortran are
adapted in this class. Other language-specific differences, e.g. those in array
indexing, are handled here, too.

- In order to indicate if an error occured, Fortran functions may return error codes.
In this class, these codes may be transformed into corresponding .NET
exceptions. An exception can be seen as an object that describes an error. The
exception can be ‘thrown’ through an application until it reaches a part of the
software which ‘feels responsible’ for that kind of error, ‘catches’ and handles it.

Step 5: Implementing the MyModelEngineWrapper class

Within the fifth step, the MyModelEngineWrapper class (created in step 2) is
implemented. This class needs to implement the IEngine interface (see 6.1.2). It may be
started by letting the C# programming environment automatically generate stubs of the
needed interface methods. The method bodies have then to be filled with code (to be
completed in step 7). The first step is to implement the Initialize and the Finish method.
At initialization, an instance of the MyModelEngineDotNetAccess class has to be
created. Requests coming through the IEngine interface (e.g. the request of performing
one timestep) can then be redirected to the engine by calling the corresponding methods
of that instance of the MyModelEngineDotNetAccess class.

Step 6: Implementing MyModelLinkableComponent

Within the sixth step, the MyModelLinkableComponent class (created in step 2) is
implemented. An object of this class represents the actual OpenMI-compliant component
that is going to be accessed by other models (cf. 6.1.2). The implementation of this class
is simple. The class creates an instance of the MyModelEngineWrapper class and stores
a reference to it. Then, the default implementation of the MyModelLinkableComponent
class, which is inherited from the SDK class LinkableEngine, becomes operationable.
That implementation uses the stored reference in order to access the engine wrapper
(instance of MyModelEngineWrapper) through the IEngine interface.

Step 7: Implementation of the remaining IEngine methods

After the first six steps, the basic structure of engine and wrapper code is in place. The
remaining task is to complete the implementation of the MyModelEngineWrapper class,
created in step 2. In step 5, stub code has been auto-generated for the methods required
by the IEngine interface that this class needs to implement. Here, the bodies of the
methods have to be filled with code. The IEngine methods to be implemented are given
in Table 5 in Appendix B.

35

Some of the methods can be completed by only changing the code in this class. The
code will access the engine core by calling methods of the MyModelEngineDotNet-
Access class. For some methods, however, changes will need to be made to the other
classes or to the engine DLL. For each method it must be decided if the bulk of
implementation should be located in the MyModelEngineWrapper class or in the engine
core. There is no general answer to this question. Advantages and disadvantages are
given in (Gijsbers et al., 2007a).

6.2 Estimation of Effort

Generally, the effort needed to migrate an existing modelling software into a
corresponding OpenMI-compliant component depends on

- the tasks to be performed by the OpenMI component,

- personal preconditions and

- technical preconditions.

After having discussed these factors generally in sections 6.2.1 through 6.2.3, the effort
related to the different steps of the migration process (cf. 6.1.3) is estimated in section
6.2.4. Finally, section 6.2.5 covers the possibly needed effort for migrating the models
that are intended to be used within MIA-CSO.

6.2.1 Tasks to be performed by the OpenMI component

As mentioned in section 6.1.1, the scenarios, in which the model to be migrated is
planned to be used, can be described in the form of well defined use cases. These use
cases determine the types of models that the component shall be linked to and describe
how exactly the model component shall be used in a linked system. A good approach
could be to define a use case, which is able to perform exactly the tasks that can
currently already be performed by manual, sequential linking of models.

The effort of model migration then definitely depends on the complexity of the defined
use cases. The wrapper around the model engine needs to implement the GetValues
method (see 6.1.1). That method must be able to return ‘best guessed’ values for
requests that refer to times or locations that are out of the current temporal or spatial
scope of the model. Although default implementations are given, additionally data
operations for the use case-specific temporal or spatial mappings may become
necessary.

For an efficient use of resources, the use cases shall be defined as simple as possible
and only as complex as necessary to achieve the objectives of the project.

6.2.2 Personal preconditions

Migrating a model application is mainly a software engineering task. The effort needed
for model migration highly depends on the available personal experience with
programming in general and with the model software to be migrated in particular. It is
highly recommended that migration is done by a person who profoundly knows the
software code.

A good understanding of object oriented programming and of the interface concept
seems to be indispensable. Experiences in the programming language C# are
advantageous. Some time is needed to understand the concept and the structure of

36

OpenMI; it is important that the interfaces defined in the standard and the relationships
between the classes that are contained in the SDK are understood in detail.

6.2.3 Technical preconditions

For model migration, the source code of the modelling software must be accessible. This
is the case for freely available modelling softwares. Commercial modelling softwares can
only be made OpenMI-compliant by the corresponding software companies.

Having access to the source code, a good understanding of the software to be migrated
is requried. A detailed documentation of the software should be available. At least, the
software should be documented in terms of comments in the source code, which allow
for an understanding of the code.

Furthermore, the effort needed to implement the OpenMI interface strongly depends on
the structure of the existing software and on the software technologies (programming
language) used.

A main precondition concerning the software structure is that the model engine to be
migrated is separated from any graphical user interfaces and that there is a clear
distinction between input, processing and output of data.

Concerning the programming language, a model engine that is written in Fortran will be
relatively more difficult to migrate than a model engine that is written in C or C++. The
last-mentioned languages are of the same family as C#, which is the recommended
language for model migration. Being object oriented, C++ programs will be easier to
migrate than C programs.

6.2.4 Effort related to the different steps of model migration

This section refers to the step-by-step procedure described in section 6.1.3.

Provided that access to the source code and to the programming environment of the
model engine is given, creating a DLL instead of an EXE in step 1 should not cause a
problem. However, restructuring the engine core is assumed to be possibly a complex
task. Providing a function that performs a single timestep and giving access to the
current values of all needed model variables after each timestep may require profound
structural changes.

The creation of C# classes in step 2 is a formal task. Support is given by the software
development environment. Class inheritence prevents from reimplementing functionality
that already exists.

Time and effort needed to implement the classes that give access to the engine DLL in
step 3 and step 4 depend on the programming language in which the engine is written.
Concerning these steps, the OpenMI documentation contains examples, in which a
Fortran DLL is accessed. Implementing the MyModelDLLAccess class should be easy as
that class only performs one-to-one translations of procedure calls. Also the
implementation of the MyModelEngineDotNetAccess class can be seen as a formal task.
Following the given example, no further structural or logical considerations are needed.

Step 5 and step 6 are easy to perform as the programming environment gives support by
auto-generating code. Implementation of the IEngine interface is completed in step 7.

37

The implementation of the IEngine interface in step 7 strongly depends on the structure
of the engine core, so it is not possible to give a general explanation of how each
individual method should be implemented. This step is assumed to be one of the most
complex.

6.2.5 Effort related to the models intended to be used in MIA-CSO

In the last sections the effort of migrating model applications into OpenMI components
has been discussed in terms of general aspects and also related to the different steps
involved.

Concerning the OpenMI scenario presented in section 4.1, that possibly could be applied
within MIA-CSO, it is difficult to estimate the effort that would be needed to migrate those
model engines, which are currently not OpenMI-compliant, into corresponding OpenMI
components. The source codes of the river models HYDRAX and QSim are not freely
available. The author does not have information on the structure of these programs and
therefore the steps needed to make HYDRAX and QSim OpenMI-compliant are
unknown. In the following, only some very general assumptions are made.

HYDRAX is an executable application (EXE), written in the programming language C. It
is assumed that the model engine could be easily provided in the form of a DLL. It should
not cause much effort to access that DLL from within the C# programming language.
Model migration will mainly depend on how well the structure of the engine already
meets the OpenMI requirements.

QSim is an executable application (EXE), written in the programming language Fortran.
Again, it is assumed that the model engine could be easily provided in the form of a DLL.
Compared to HYDRAX, providing C# wrapper classes that access the Fortran-DLL of
QSim will be a more complex task. Furthermore, it is supposed that QSim is more
complex than HYDRAX. Therefore, changing the structure of the software in order to
meet the requirements of OpenMI is estimated to be more difficult than it is the case for
HYDRAX.

An option could also be to make the GERRIS software, which already realizes the link
between HYDRAX and QSim, OpenMI-compliant. GERRIS is an executable application
(EXE), written in the programming language Visual Basic. It is assumed that the software
could be easily transformed from Visual Basic to VB.NET, the corresponding language in
the .NET environment. Provided that the GERRIS software could be compiled into a
.NET assembly, it should be easy to access the GERRIS methods from within the C#
wrapper classes that are provided in the OpenMI SDK. However, as GERRIS only runs
complete simulations of HYDRAX and QSim models, and so is not able to perfom a
single simulation timestep, an OpenMI component of GERRIS could not be used in an
OpenMI scenario that requires feedback between models.

38

Chapter 7: The InfoWorks Application Programming Interface

(API)

Some of the programming-specific terms used within this chapter, that are underlined at
first usage, can be found in the glossary in Appendix A.

The InfoWorks software is shipped with a so called Type Library that defines a set of
functions (methods) of the software that can be accessed from within other (e.g. self
developed) software programs. The specification of methods including their names,
return types and number, order and types of parameters that these methods accept is
referred to as the Application Programming Interface (API; see 2.2.2).

This chapter describes how the InfoWorks Type Library/API has been tested. After
having defined the objectives of the tests (see 7.1), the available material, the used
environment and the applied testing strategy are described (see 7.2). Finally, section 7.3
summarizes the results that have been obtained by conducting the tests.

7.1 Objectives

The objective of this sub-study was to find out if and to what extent the InfoWorks API
can be used within the MIA-CSO project. It should be investigated how using InfoWorks’
functionality through the API can facilitate and automate processes that, so far, have
been performed manually. For example, automated model calibration as well as
uncertainty and sensitivity analysis that require repeated simulation runs in a loop could
be enabled. Therefore, the API should offer methods that allow to change model
parameters, to run simulations and to export simulation results.

Using the API may be of particular interest as the first part of this study revealed that
InfoWorks’ current OpenMI implementation does not allow for the last-mentioned tasks.
As shown in Chapter 5, an OpenMI component exported by InfoWorks only offers input
exchange items for flow and level. Model parameters are not intended to be accessed
via the OpenMI interface. So, model modification being a prerequisite for these more
sophisticated tasks cannot be undertaken by access of InfoWorks through OpenMI.

The specific questions (to be answered in 7.3) are:

Question 1 (to be answered in 7.3.1): How does access to the InfoWorks Type Library
through its API work technically? It is intended to be realized from within a C#
program,

Question 2 (to be answered in 7.3.2): Which methods are offered by the API?

Question 3 (to be answered in 7.3.3): How do the methods work and do they allow for

• importing model and input data,

• changing model parameters,

• running simulations,

• exporting simulation results?

Question 4 (to be answered in 7.3.4): Which of the tasks to be dealt with in the MIA-CSO
project can be performed by using the InfoWorks API, and which cannot?

39

7.2 Materials and Strategy

This section gives an overview of the available API documentation that was used (see
7.2.1), describes the programming environment in which the tests were performed (see
7.2.2) and covers the testing procedure (see 7.2.3).

7.2.1 InfoWorks API documentation

Starting point of the study was the review of an unpublished documentation about the
InfoWorks API (WSL, 2007) that was received from the Wallingford Software support
team. The structure of that document is shown in Table 2. Apart from this document, no
further documentation describing the InfoWorks API was available.

Table 2: Structure of the API documentation provided by Wallingford Software Ltd. Terms in italics
refer to names of methods and properties of the class that is defined by the InfoWorks API.

Chapter Subchapter/Methods/Properties
Prerequisites
Terminology
Basic Principles Introduction
 Identifying objects in the database
 Identifying object types
 Getting started
Database
Navigation

Children, Parent, Exists

Object Properties ShortDisplayName, DisplayName, Type, Value
Object Creation NewObject, NewSim
Runing Simulations Run, WNRun, RSRun
Import Import
Export Export, ExportResults, ExportResultsSnapshot,

ExportWNResults, ExportRSResults
Database
Properties

LocalRoot, LocalRootGUID

Miscellaneous BrowseForObjects, GetNetwork, CompareNetworks,
EngineeringValidation, CheckIn

Examples Creation of WS run and sim objects
 Creation of CS run and sim objects
 Creation of an RS run and sim object
 Exporting a results snapshot
 C# example
 Full worked example (Genetic Algorithm)
Appendix A: Object types and codes
 B: Fields to get and set via value property
 C: Special cases for properties
 D: Export result codes

The document first introduces the used terminology and basic principles, then the
different methods and properties of the InfoWorks class that the API provides, are
explained.

The code examples, which are given then in the document, are primarily written in Visual
Basic. The InfoWorks Type Library, however, can also be used from other languages like
e.g. Visual C++, Visual Basic.NET and Visual C#.NET. A code example in the
programming language C# (read: ‘C sharp’) is presented at the end of Wallingford’s API
documentation.

40

Finally, the appendices of the API documentation list specific codes that identify the
different InfoWorks objects and that are used e.g. as method parameters.

7.2.2 Chosen programming language and environment

The computer platform used for this study was Microsoft Windows XP Professional
Version 2002, Service Pack 3.

Assuming that the planned environment for model integration may access at least some
models or other components through OpenMI, the preferred programming language to
be used within MIA-CSO is C#. Not only is the OpenMI interface specification delivered
in the form of C#-specific interface declarations, but also the Software Development Kit
(SDK) being part of the OpenMI dissemination is available as C# source code.

Thus, apart from reproducing the VBA-examples given in the documentation, the API
methods were tested in a C# environment. For C# software development, the Integrated
Development Environment (IDE) SharpDevelop was used. The software SharpDevelop
in the used version 2.2 requires the Microsoft .NET Framework in version 2.0 to be
installed on the computer.

The .NET Framework Software Development Kit (SDK) was also installed. From the
SDK, the Type Library Importer ‘tlbimp.exe’ (see step 1 in Appendix D) and the .NET
Framework IL Dissassembler ‘ildasm.exe’ (see 7.3.2) were used.

SharpDevelop supports the use of the version control system SubVersion. That program
and the corresponding client program TortoiseSVN, which supplies a graphical interface
to SubVersion, were installed separately. The version control system is used to keep
track of changes in the software source code.

All mentioned programs are free for download (see Table 3).

The testing of API calls has been performed from within a Windows console application
project that has been created in SharpDevelop. A class has been written that
encapsulates the calls of the API methods. By doing so, exceptions that may occur when
calling the API can be caught and handled. Further classes have been developed that
use the methods of this first class in order to perform more complex tasks (see 7.2.3).

Table 3: Free download locations for the used programs.

Program Download location

Microsoft .NET
Framwork 2.0

http://www.microsoft.com/downloads/

details.aspx?FamilyID=0856eacb-4362-4b0d-8edd-

aab15c5e04f5

Microsoft .NET
Framework 2.0
SDK

http://www.microsoft.com/downloads/

details.aspx?FamilyID=fe6f2099-b7b4-4f47-a244-

c96d69c35dec

SharpDevelop
2.2

http://www.icsharpcode.net/OpenSource/SD/Download

SubVersion http://subversion.tigris.org/ getting.html

TortoiseSVN http://tortoisesvn.net/downloads

41

7.2.3 Testing procedure

Wallingford’s API documentation focuses on accessing the InfoWorks Type Library from
Visual Basic (VB) programs (see 7.2.1). As for MIA-CSO, however, C# is the preferred
programming language, the first task was to enable access to the library from within C#
programs.

Having realized the access to the library allowed to inspect the library and to find out
about additional features that are not reported in Wallingford’s API documentation.

A set of relevant methods and properties has then been tested. For these tests, existing
InfoWorks CS models could be used.

Having gained first experiences with the properties and methods that can be accessed
through the InfoWorks API, it was tested how method calls can be combined in order to
perform more complex tasks. Therefore, a simple use case has been defined. Based on
an existing InfoWorks sewer network containing a stormwater tank it was tested if API
can be used to solve a simple optimization problem. The stormwater tank holding back
combined sewer overflows should be designed in such a way that, for a given rain event,
a certain overflow volume goes below a given total volume.

7.3 Results

Section 7.3.1 describes how the InfoWorks Type Library could be accessed from either
within a VBA or from within a C# program. In section 7.3.2, the content of the InfoWorks
library is investigated and a list of all available methods is given. Section 7.3.3
concentrates on specific tasks that are performed by individual API methods and reports
on particularities of their usage. Finally, section 7.3.4 describes how a simple
optimization problem could be solved by use of API calls.

7.3.1 Accessing the InfoWorks Type Library

When installing InfoWorks 9.5 on a Windows computer, the software registers the
‘Wallingford Software InfoWorks 17.0 Type Library’ in the Windows Registry. The
InfoWorks Type Library contains the InfoWorks API definition. Often, type libraries are
contained in a dynamic link library (DLL). In the case of InfoWorks, however, the type
library is embedded directly in the executable program file ‘infoworks.exe’, which, when
started in the usual way, runs the InfoWorks application with its graphical user interface.
Table 4 lists the relevant registry entries that can be found on a Windows computer if
InfoWorks is installed.

Table 4: Values that are registered in the Windows Registry if InfoWorks is installed. File paths
may differ due to different installation paths of InfoWorks on different computers.

Registry Key Registered Value

HKEY_LOCAL_MACHINE\SOFTWARE\

Classes\TypeLib\

{7861BEBB-646E-43F3-B90B-47E8885BD7A3}\

11.0

Wallingford Software InfoWorks
17.0 Type Library

HKEY_LOCAL_MACHINE\SOFTWARE\

Classes\TypeLib\

{7861BEBB-646E-43F3-B90B-47E8885BD7A3}\

11.0\0\win32

C:\Programme\InfoWorks95\
infoworks.exe

42

Once a library is registered, it can be referenced and accessed from other programs. An
easy way to access software libraries becomes possible if Microsoft Office is installed on
the computer. The Office applications (preferably Microsoft Excel) give access to the
programming language Visual Basic for Applications (VBA), for which a programming
environment is provided. Appendix C describes step-by-step how the InfoWorks Type
Library can be accessed from within the VBA environment provided by Microsoft Excel.

Corresponding to step 3 of that procedure described for VBA, also in SharpDevelop (see
7.2.2), references to libraries can be added to a programming project. This is done by
means of a dialog box (see Figure 23). The latter opens when choosing ‘Add Reference’
from the context menu (right mouse click) of the ‘References’ item in the ‘Projects’ view
(see Figure 22).

Figure 22: Opening the 'Add Reference' dialog in SharpDevelop.

The ‘COM’ tab of the ‘Add Reference’ dialog contains a list of all registered type libraries.
If InfoWorks is installed, the list contains the entry ‘Wallingford Software InfoWorks 17.0
Type Library’ (or corresponding entries for different program versions; cf. step 3 in
Appendix C). As indicated in the bottom area of the dialog box and as described above,
the type library ‘InfoWorksLib’ is contained in the executable program file ‘infoworks.exe’.

Figure 23: ‘Add Reference’ dialog box for adding references in SharpDevelop.

43

Trying to add a reference to the InfoWorks Type Library in this way failed. SharpDevelop
complained about an unregistered library. This problem could not be resolved. However,
an alternative procedure was found that granted access to the library. This procedure is
given in Appendix D, again in the form of step-by-step instructions.

7.3.2 Content of the InfoWorks Library

This section gives an overview about the classes, methods and properties that are
defined by the InfoWorks API and that are contained in the InfoWorks Type Library.

Additional to the (incomplete) documentation of the InfoWorks API (see 7.2.1),
information about the API could now, having realized the access to the InfoWorks Type
Library (see 7.3.1) be obtained directly from inspecting the library.

Using VBA, the content of the original InfoWorks Type Library (contained in the
‘infoworks.exe’ file) can be viewed by means of the VBA Object Browser (see step 4 in
Appendix C). For use within SharpDevelop, the original InfoWorks Type Library was
converted into a corresponding .NET assembly (see step 1 in Appendix D). The .NET
assembly may be seen as the .NET equivalent of the Type Library which, in the .NET
environment, can be easily accessed from any .NET language (like C#, VB.Net, etc.).
The newly created .NET assembly could be analyzed by inspecting it with the .NET
Framework IL Dissassembler tool (see 7.2.2 and Figure 24).

Figure 24: Inspecting the InfoWorks library by means of the .NET IL Dissassembler tool.

In the ‘InfoWorksLib’ assembly, all the InfoWorks functionality that is made accessible
through the API is contained in the ‘InfoWorksClass’ being the only class defined in the
assembly. An object of this class represents the InfoWorks application itself. All available
methods are contained in this class. It has to be taken attention that the ‘InfoWorksClass’
is not contained in the original InfoWorks Type Library (contained in the ‘infoworks.exe’
file). There, the corresponding class is called just ‘InfoWorks’.

In the assembly as well as in the original type library, there are no separate classes
representing the different elements that play a role in an InfoWorks model (like networks,

44

rainfall events, waste water specifications, inflows, levels, runs, etc.). This means that
the InfoWorks API does not follow an object-oriented approach. According to the object-
oriented concept, methods and properties that correspond to the same kind of object
would be grouped together to classes (e.g. network class, rainfall event class, waste
water class, etc.). Concrete representations of these classes (i.e. one specific network,
one specific rainfall, etc.) would be referred to as objects of the corresponding classes.

In the terminology of the API documentation, however, the term ‘object’ is used in a
different context (see e.g. ‘Creation of CS run and sim objects’ in 7.2.1, Table 2). There,
it refers to the above mentioned InfoWorks elements and is not used in the
programming-specific sense. This may confuse when working with the InfoWorks Type
Library together with the API documentation.

Inspecting the InfoWorks Type Library, or, more precisely, the ‘InfoWorksLib’ assembly,
revealed that there are more methods available through the API than are described in
the documentation. Table 7 and Table 8 of Appendix E list all methods and properties,
respectively, that are actually contained in the InfoWorksLib assembly. It is indicated, for
which of them a description can be found in the documentation.

7.3.3 Calling individual API methods

The preliminary steps needed to access the InfoWorks Type Library or rather the
corresponding .NET assembly from within a C# program in SharpDevelop are (see also
Appendix D):

1. Adding a reference to the .NET assembly ‘InfoWorksLib’ to the SharpDevelop
project (see Appendix D, step 4).

2. Declaring the usage of the library at the beginning of the source code file with

using InfoWorksLib;

(see code example in Appendix D, step 5).

3. Creating an object (also called ‘instance’) of the ‘InfoWorksClass’.
In the code example given in the InfoWorks API documentation, this is
(analogously) done by:

InfoWorksClass iw;

iw = new InfoWorksClass();

In the C# test program written within this study, this was slightly modified to:

InfoWorks iw;

iw = new InfoWorksClass();

In both versions, a new instance of the InfoWorksClass is created and a reference
to that instance is stored in the variable ‘iw’ (second line). However, in the upper
version ‘iw’ is declared as being of type ‘InfoWorksClass’, whereas in the lower
version, it is declared as being of type ‘InfoWorks’ (first line in each case).

As indicated by the blue symbol labelled ‘I’ (Interface) in Figure 24, the type
‘InfoWorks’ represents an interface and not a class. That interface corresponds to
the actual InfoWorks API. An interface always needs to be implemented by a class,
in which the declared interface members are filled with concrete program code. In
this case, this is realized by the ‘InfoWorksClass’, which implements the
‘InfoWorks’ interface. This distinction between class and interface holds only true
for the created .NET assembly and not for the original InfoWorks Type Library

45

(contained in the ‘infoworks.exe’ file) where only the class InfoWorks exists.

Having declared the variable ‘iw’ as ‘InfoWorks’ in the lower version allows ‘iw’ to
refer to an object of any class that implements the ‘InfoWorks’ interface. Thus, the
second version is more general than the first one, which requires ‘iw’ to hold a
reference to an object of exactly the ‘InfoWorksClass’. Both versions perform
exactly the same. However, the second version was preferred because only that
version made the auto-complete function of the SharpDevelop editor work. The
auto-complete function suggests method names and property names while typing
and gives a preview of required parameters.

Now, having an instance of the InfoWorksClass, the different methods and
properties of that object can be accessed by means of the variable ‘iw’.

4. Initializing the InfoWorksClass object.

iw.Initialise(0, "", "");

Before running any other methods it is necessary to initialize InfoWorks by calling
the ‘Initialise’ method. In the API documentation, the former version of that method
‘InitForTest’ is explained, which seems to do exactly the same. The first parameter
(‘0’) determines which part of the InfoWorks software (InfoWorks CS = 0,
InfoWorks WS = 2, InfoWorks RS = 4, InfoNet = 6) is meant to be initialized. The
second and third parameters are username and password for Oracle or SQL
Server. They can be left blank (like here) if the actual InfoWorks installation is
based on a Microsoft Jet Database.

A full list of methods and properties is given in Appendix E. The following concentrates
on methods that are related to the specific tasks, which need to be performed within the
scenario given in section 4.2. Differences between documented and observed behaviour
of methods or properties are reported and, if available, additional hints are given. The
initially posed questions (see 7.1) are answered. The code examples given below
assume that the preliminary steps above have been performed.

It has to be kept in mind that for many methods that did not work as expected, it could
not be judged, if this was due to a wrong usage of the method or due to any other reason
(e.g. incomplete implementation, misleading naming of methods or method parameters,
etc.). Unfortunately, the poor documentation of the InfoWorks API (see 7.2.1) did only
allow for a trial-and-error testing approach.

Methods on InfoWorks objects

- Objects in the InfoWorks database are identified by a so called scripting path.
Beginning at the root, the scripting path describes the way to the object in the
object tree. Because it is possible to have objects of the same name but different
types in the same Model Group (e.g. a Network and an Event with the same
name), at each point in the tree the name of the object is prefixed with the type of
the object. An example for a scripting path is
>CG~SPREE2011_OMI_Test>RUNG~API_Test>RUN~run2

The different levels of the tree are separated by the ‘>’ character while in each
case the object name is separated from its type code by the ‘~’ character. The
type codes ‘CG’ and ‘RUNG’ refer to ‘Catchment Group’ and ‘Run Group’,
respectively.

46

- The Children method allows to get a list of objects that belong to a group of
objects, e.g. Run objects within a Run Group. The following code snippet gives
an example of how each child object can be accessed in a loop over the array
that is returned by the Children method:

object[] children;

children = (object[]) iw.Children(">CG~SPREE2011_OMI_Test");

for (int i = 0; i < children.GetUpperBound(0); i++) {

 // Do something with children[i], e.g.:

 Console.WriteLine(children[i].ToString());

};

- The property Exists can be used to check if an object to which the scripting path
is given, does exist in the InfoWorks database.

- New objects can be created by the NewObject method.

- The API contains a Delete method, which is not described in the documentation.
Within the tests, sometimes the Delete method worked, sometimes it failed. It
was figured out that the deletion of objects is not allowed under certain
circumstances. This can be checked in the InfoWorks GUI. In the context menu of
an object chosen in the Catchment Group window (which appears when right
clicking onto that object) the entry ‘Delete’ is disabled or not. For example, the
deletion of a Network object is disabled if the network is used in a run. If the
Delete option is disabled, the API method Delete fails. Trying to delete an Inflow
object always failed.

- It seems that there is no API method being able to make a copy of an existing
InfoWorks object. It would be useful to have such a method for copying Run
objects. In section 7.3.4, a workaround will be described.

- For checking in and checking out networks, the InfoWorks API contains the
methods CheckIn and CheckOut, respectively. Only the CheckIn method is
mentioned in the InfoWorks API documentation. Calling CheckIn via API worked.

- As opposed to the InfoWorks GUI, the InfoWorks API does not offer a method
that performs a simple validation but only the method EngineeringValidation that
runs a more detailed validation. The EngineeringValidation method asks for the
scripting path to an Engineering Validation (EV) object. Calling the method with
the path to a default EV object, that has been created by means of the InfoWorks
GUI, worked.

- There have been general problems with Inflow objects. Invoking methods (e.g.
Children, get_DisplayName, get_Type, Delete) on an Inflow object failed,
although the scripting path of the Inflow object was received by the
BrowseForObjects method which lets the user choose only existing objects.

Importing data

- For importing several kinds of input data, the InfoWorks API offers the Import
method. Among other parameters, the ‘parent’ object must be given, of which the
imported object will be a ‘child’. When, for example, importing a Rainfall Event,
the parent object must be a Rainfall Group. The Import method also accepts a
format specifier, which, in some cases, allows to alter the behaviour of the
method. When specifying the import file, always the full path to the file should be

47

given. Placing the file in the current directory and specifying it only by name
failed.

- Importing Rainfall Events: Independent from the given format specifier (it shall be
left blank), the event will be imported from a file in the normal event file format,
that is, the ‘red’-Format. Rainfall data from CSV-files cannot be imported.

- Importing Networks: Networks can be imported from CSV-files. There are two
different format specifiers: While the specifier ‘CSV’ will create a new network
from the imported CSV-file, ‘CSVUP’ will update an existing network. The results
of test imports with different format specifiers and different ‘parents’ are given in
the following table:

Format ‘Parent’ Result

CSV Catchment Group The imported network is created as a
new Network within the Catchment
Group.

CSV Network This is not intended. The ‘parent’ should
always be a Catchment Group if a new
network shall be imported (with ‘CSV’).

CSVUP Network (checked in) The changed Network is created one
level deeper than the ‘parent’; and it is
checked out.

CSVUP Network
(checked out)

E.g. in Figure 25, left:
‘Net_A#1’

The changed Network is created at the
same level as the ‘parent’, and it is
checked out.

E.g. in Figure 25, left: ‘Net_A#1_rev1’
and ‘Net_A#1_rev2’, resulting from
updating ‘Net_A#1’ twice.

CSVUP Network (created with
‘Check out and branch’)

E.g. in Figure 25, right:
‘myNetwork_new_1’

The changed Network is created one
level deeper than the ‘parent’, and it is
checked out.

E.g. in Figure 25, right:
‘myNetwork_new_1_rev1’ and
‘myNetwork_new_1_rev2’, resulting from
updating ‘myNetwork_new_1’ twice.

Imported networks need to be validated before they can be used within a
simulation run. Therefore, the API method EngineeringValidation can be used
(see above in this section).

48

Figure 25: Network tree after importing networks with the API Import-method.

- Importing Inflow: No matter which format specifier is chosen, only files in ‘qin’-
format can be imported. Trying to import inflow data from a CSV-file (as it is
possible via the InfoWorks GUI), created an Inflow object, but that did not contain
any data.

Changing data

- In InfoWorks, all information about the model is contained in a database,
consisting of different tables for the different types of objects (e.g. Rainfall Event,
Inflow, Level, Network, Run). The columns (fields) of a table represent the
variables that specify the objects in that table. The InfoWorks API allows access
to specific fields and tables. Which fields of which tables can be accessed via the
API, is documented in Appendix B of the InfoWorks API documentation.
Concerning InfoWorks CS, the only table that allows access to many of its fields it
the Run table. In the InfoWorks GUI, the ‘Schedule Hyraulic Run’ dialog
(cf. Figure 6 in section 5.2.2) can be seen as the panel that gives access to the
Run table. Thus, the Run parameters that can be set in this dialog are mainly the
parameters that can be accessed through the InfoWorks API.

- The fields, to which access is allowed, can be got and set by means of the Value
property that is part of the API. The Value property accepts two parameters
(scripting path to the object to be changed and field name of the variable to be
changed). As properties in C# are not able to accept parameters, the .NET
assembly, that has been created out of the InfoWorks Type Library (see 7.3.2),
contains the corresponding methods get_Value and set_Value for accessing the
object variables (cf. Table 8 in Appendix E).

Running a simulation

- The Run method performs an InfoWorks CS simulation run. The method accepts
the scripting path of the Run object that specifies the simulation to be run. When
the Run method is called, the Simulation Controller (cf. step 5 in Appendix C)

49

appears and runs the complete simulation. There are corresponding run methods
(RSRun and WNRun, respectively) for running InfoWorks RS and InfoWorks WS
models, respectively (cf. Appendix E).

Exporting data

- The InfoWorks API provides two different methods that export data to files: the
method Export for exporting different kinds of InfoWorks objects (e.g. Rainfall
Events, Selection Lists, Networks) and the method ExportResults for the export of
simulation results.

- The Export method accepts a parameter that determines the desired output
format. For example, InfoWorks CS Networks can be exported to the file formats
CSV (Comma Separated Values), MIF (MapInfo Interchange Format), SHP (ESRI
shape files), GDB (ArcGIS personal GeoDatabases) and DSD (HydroWorks).

- Exporting Networks: Using the Export method for CSV export, the whole Network
is exported to exactly one CSV file containing the data of all database tables that
describe the Network. Using the InfoWorks GUI, the export of Networks can be
configured (e.g. export to multiple files instead of one file). However, the Export
method provided by the InfoWorks API does not seem to allow for those changes
in the export behaviour.

- Exporting simulation results: The ExportResults method can export simulation
results to CSV, QIN or Hyx style files. Concerning CSV export, the attribute to be
exported (e.g. depth, flow, mass concentrations of COD, BOD, etc.) and the link
end (upstream or downstream) need to be specified. The list of links, for which
the results are requested, can be given to the method in the form of a comma
separated list or as the path to a corresponding Selection List object. According
to the API documentation and according to the tests, the export of results is
restricted to link attributes.

Having obtained the above results and recalling Question 3, posed in section 7.1, it can
be summarized that the methods provided by the InfoWorks API allow for:

- importing model and input data from files. However, less file formats are
supported compared to import via the InfoWorks GUI.

- changing model parameters. However, this is mainly limited to Run parameters.
For changing other parameters, a workaround is needed (see 7.3.4).

- running simulations. However, only complete simulations can be invoked. It is not
possible to access the model (e.g. asking for current values of model state
variables) while running.

- exporting simulation results to files. However, it seems that only properties of
Links (e.g. conduits, pumps, weirs) can be exported. It is unknown if there is a
possibility to export properties of Nodes (e.g. the water level in a manhole).

7.3.4 Performing more complex tasks by calling API methods

This section describes first how tasks, for which the InfoWorks API does not directly offer
appropriate methods or properties, can be performed indirectly by adequate work-
arounds. Following, the main procedure is given that is basically performed within the C#
program being able to solve the simple optimization problem formulated in the use case

50

of section 7.2.3 by using InfoWorks functionality through the InfoWorks API. Within the
same program, all API tests have been performed. In order to give an impression about
the structure of the program, its class diagram is shown in Figure 26 in Appendix F.

Workaround 1: Changing model parameters

Network parameters which cannot be accessed directly by the Value method (see 7.3.3)
could successfully be changed indirectly by

- exporting the whole network to a CSV file with the Export method,

- extracting those lines out of the file that represent the Network elements to be
changed,

- modifying those fields of the extracted lines that contain the parameters to be
changed,

- writing a new file containing the modified lines plus corresponding table headers,

- importing the generated file with the Import method and with the format
specification set to ‘CSVUP’ (update).

The given procedure has been implemented in a C# class named IWNetwork, which
provides GetValue and SetValue methods. Each of the methods accepts as parameters
the type of network table and an identification of the elements, as well as the name of the
field to be changed. In addition, the SetValue method receives the new value of the
network parameter to be changed. The SetValue method implements basically the steps
listed above.

Workaround 2: Copying Run objects

In order to perform a new simulation with a modified network, it would be useful to copy
an existing, pre-defined Run object into a new Run object of which then just the Network
property (name of the network to be simulated) needed to be changed. As an API
method for copying objects was not available (see 7.3.3), the following procedure was
realized:

- Create a new Run object by means of the NewObject method.

- Copy all values of the original Run object into the newly created one.

In the second step, those values are copied that are documented in the API
documentation. However, there might be more parameters. Also concerning the second
step, it was experienced that at least setting the Inflow property did not work. The
scripting path of an Inflow object being set in the original Run object is said to be non
existent although it actually does exist (see also reported problems with Inflow objects in
7.3.3).

The above procedure is implemented in two methods called MakeRunVersion and
SetParameterSetting, respectively. Thes methods are defined in the IWRun class (cf.
Appendix F).

Solving a simple optimization problem by use of the InfoWorks API

The developed C# program that solves the optimization problem defined in section 7.2.3
basically performs in the following steps:

1. Choose a prepared InfoWorks Run (current Run).

51

2. In the Network of the current Run, set the volume of the stormwater tank
(� Workaround 1) to an initial value (if this step is performed for the first time) or
increase the volume by a constant value (else).

3. Copy the current Run object into a new Run (� Workaround 2). In the new Run,
specify that the network to be simulated is the new, modified network.

4. Perform the new Run, simulating the new, modified network.

5. From the simulation results of the Run, export the tank overflows to a file.

6. Calculate the total overflow volume from the exported file.

7. If the overflow volume is still above a certain threshold, return to step 2, else quit.

Alltogether, it can be summarized that it was possible to use the API for some of the
MIA-CSO purposes. The export of node properties could not be realized by means of
InfoWorks API calls. In some cases, node properties can be deduced from the properties
of connected links. Accessing InfoWorks through its API, a simple optimization problem
could be solved in an automated manner.

52

Chapter 8: Summary and Conclusions

The overall objective of MIA-CSO is to develop a model-based planning instrument for
impact based CSO control. The objective of this study was to examine the potential and
the drawbacks of different model coupling techniques that may be taken into account
within the MIA-CSO project.

- The models InfoWorks CS (Wallingford Software Ltd.) and HYDRAX/QSim
(German Federal Institute of Hydrology, BfG) that are intended to be used within
MIA-CSO as well as two different techniques for model coupling (Open Modelling
Interface – OpenMI and Application Programming Interfaces – API) are described
(Chapter 2).

- It is presented how impacts of combined sewer overflows (CSO) on receiving
waters have been simulated in Berlin, so far (Chapter 3).

- According to the objectives of MIA-CSO (statistical analysis, uncertainty and
sensitivity analysis), chapter 4 describes in the form of two possible scenarios,
how the intended integrated modelling system could be realized:

- scenario one is based on the application of the OpenMI,

- scenario two is based on the application of model-specific APIs.

- Practical tests are reported, in which simple scenarios, consisting of available
OpenMI components, have been set-up and carried out by use of the OpenMI
Configuration Editor. Potential and drawbacks of the OpenMI implementation in
InfoWorks CS are described (Chapter 5).

- A wrapping procedure is described that helps making existing models comply
with the OpenMI standard. Assumptions are made about the effort involved
(Chapter 6).

- Experiences with the InfoWorks Type Library, which defines the InfoWorks API,
are reported and the available methods and properties are documented. It is
explained how specific tasks can be handled by means of API calls (Chapter 7).

General Results and conclusions are:

- Concerning model coupling techniques, sequential linking, where models run one
after the other can be distinguished from parallel linking where models advance
simultaneously in time and where models may exchange data at each timestep.
In the current modelling practice applied in Berlin, models run sequentially.
Simulation, data export and import as well as data transformation are realized
manually. By automating these processes, the modelling procedure can be
improved in terms of efficiency, error-proneness and accuracy.

Results and conclusions concerning the OpenMI:

- The OpenMI is a generic interface specification that standardizes the parallel
linking approach. It defines the manner in which models are run and data are
exchanged between models (at each timestep). The process of making existing
models compliant to the OpenMI standard (migration) can be seen as teaching
the models to ‘speak the same language’.

53

- Migration of a model does not per se guarantee that the model can be used in
any OpenMI scenario. The useability of OpenMI components strongly depends
on

- how models implement the OpenMI and

- which exchange items and additional data operations they offer.

- Migration requires the model’s source code to be available. The migration
process is supported by software tools that are provided by the OpenMI
Association. The effort needed to migrate an existing modelling software into a
corresponding OpenMI-compliant component depends on the tasks to be
performed by the OpenMI component, personal preconditions and technical
preconditions. It strongly depends on the structure of the existing model engine.

- A model will only be made OpenMI-compliant if there is an incentive for the model
developer to do so.

- In software development, detailed planning and well-chosen structures can
prevent from difficulties in modifying a software when changes or extensions
become necessary. The OpenMI provides a pre-defined structure, developed by
experts in environmental modelling. It may be a great help for software engineers
who are requested to couple models, to have such a structure to follow. Following
a structure does not only mean a restriction but can also support the developer.

- Gaining experience in the OpenMI is assumed to be a kind of expert knowledge
that may be strongly requested in the near future. This is expected as the
OpenMI is already used within many research projects (even outside Europe).

- Of the model softwares used to date within MIA-CSO, only InfoWorks CS
supports the OpenMI. The current OpenMI implementation in InfoWorks only
allows for flows and water levels as input quantities.

- If OpenMI is implemented or not, will depend on the personal interests of the
model developers and on their ability in doing the migration. At least within near
future, it is unprobable that the models Hydrax and QSim that are intended to be
used within MIA-CSO will be migrated to the OpenMI standard.

- Further developments at KWB will therefore concentrate on additional tools for
the MIA-CSO planning instrument, which allow for e.g. statistical analysis,
automated calibration, uncertainty and sensitivity analysis. By doing so, the
OpenMI approach can be followed, which will make own developments also
attractive to others.

Results and conclusions concerning API:

- Through Application Programming Interfaces (API), a software allows a selection
of its internal functions to be called from other softwares. An API is specific to the
software that it is provided by. An API often allows for automated access to those
functions of a software that normally are invoked by a Graphical User Interface
(GUI).

- Compared to the OpenMI scenario, in the API scenario models are processed
sequentially. However, model preparation, data import, start of simulation and
data export are automated using the provided API functionality.

54

- The InfoWorks API documentation provided by Wallingford Software Ltd. is
incomplete. This can be problematic when InfoWorks shall be accessed through
its API.

- This report describes step-by-step how InfoWorks CS can be accessed through
its API from within the programming languages VBA and C#, respectively.

- The InfoWorks API allows for importing model data and input data from files.
Changing of model parameters can be realized indirectly by a sequence of data
export, data manipulation and data import. The same holds true for e.g. rainfall
series data. Only complete simulations can be invoked. Being limited to
properties of links (e.g. conduits, pumps, weirs), simulation results can be
exported to files.

- The possibility to change internal model parameters through the InfoWorks API
allows for applying this interface for e.g. statistical analysis, automated
calibration, uncertainty and sensitivity analysis.

55

Appendix A: Glossary of programming-specific terms

Here, some of the terms that are commonly used in programming and that are used in
this report, are introduced.

Term Description

Class In object-oriented programming, a class describes the structure and
behaviour of objects. This is done in the form of properties and
methods. A class may be seen as a template for creating objects.

Exception An exception can be seen as an object that describes an error. The
exception can be ‘thrown’ through an application until it reaches a part
of the software which ‘feels responsible’ for that kind of error, ‘catches’
and handles it.

Function Functions are sub-routines that are able to return a value. In object-
oriented programming, functions are referred to as methods.

Instantiation See description of object.

Method Methods are functions. They can be called in order to perform a
process on an object. Calling methods may also change the
properties of an object.

Object An object is a discrete software entity that represents a concrete
realization of a class. Objects only exist during the run-time of the
software. They need to be created. The creation of objects is also
referred to as instantiation.

Property Properties represent the state of an object. In the class, of which the

object is a representative, properties are defined in terms of internal
variables that can be got (read) or set (written).

Visual Basic for
Applications
(VBA)

Visual Basic for Applications (VBA) is a programming language
developed by Microsoft that is closely related to Visual Basic. It can
be used to automate applications that offer an API from within
Microsoft Office applications like Excel, Access, …

Windows
Registry

The Windows Registry is a database which stores settings and
options for Microsoft Windows operating systems. An editor which
gives access to the registry can be started with ‘regedit’ from the
Windows command prompt.

56

Appendix B: The IEngine interface

The following table lists the methods defined by the IEngine interface. That interface
needs to be implemented by the wrapper class MyModelEngineWrapper if the wrapper
pattern recommended by the OpenMI Association Technical Committee is used for
model migration (see 6.1.2 and 6.1.3, steps 5 and 7, in the main text). The descriptions
of the methods have been directly taken from comments in the C# source code. See
(Gijsbers et al., 2007a) for details on return values, parameters and types.

Table 5: Methods defined in the IEngine interface being provided in the wrapper package of the
OpenMI SDK.

Model description methods

string GetModelID() Returns the model id. The model id identifies the
populated model component. Example: ‘River Rhine’.

string GetModelDescription() Returns the model description. The model description
is a description of the populated model component.

ITimeSpan GetTimeHorizon() Returns the time horizon for the populated model
component. The time horizon for a model is typically
the same as the simulation period, which normally
depends on the available input data. When your
model is running in the OpenMI environment, the
model component must be able to return values within
the time horizon.

Exchange item methods

int

GetInputExchangeItemCount()

Returns the number of input exchange items for the
populated model component.

int

GetOutputExchangeItemCount()

Returns the number of output exchange items for the
populated model component.

OutputExchangeItem

GetOutputExchangeItem(

int exchangeItemIndex)

Returns a specific output exchange item from the
populated model component.

InputExchangeItem

GetInputExchangeItem(

int exchangeItemIndex)

Returns a specific input exchange item from the
populated model component.

Execution control methods (inherited from IRunEngine)

void

Initialize(Hashtable properties)

Initialize will typically be invoked just after creation of
the object that implements the IRunEngine interface.

57

bool PerformTimeStep() This method will make the model engine perform one
time step.

void Finish() This method will be invoked after all computations are
completed. Deallocation of memory and closing files
could be implemented in this method.

void Dispose() This method will be invoked after all computations are
completed and after the Finish method has been
invoked.

Time methods (inherited from IRunEngine)

ITime GetCurrentTime() Gets the current time of the model engine.

ITime GetInputTime(

string QuantityID,

string ElementSetID)

Gets the time, for which the next input is needed for a
specific quantity and element set combination.

ITimeStamp
GetEarliestNeededTime()

Gets the earliest needed time, which can be used to
clear the buffer. For most time stepping model
engines this time will be the time for the previous time
step.

Data access methods (inherited from IRunEngine)

void SetValues(
string QuantityID,
string ElementSetID,
IValueSet values)

Sets values in the model engine.

IValueSet GetValues(
string QuantityID,
string ElementSetID)

Gets values from the model engine.

Component description methods (inherited from IRunEngine)

double
GetMissingValueDefinition()

In some situations a valid value cannot be returned
when the IRunEngine.GetValues method is invoked.
In such case a missing value can be returned. The
GetMissingValuesDefinition method can be used to
query which definition of a missing value applies to
this particular model component. Example of missing
value definition could be: -999.99

string GetComponentID() Gets the component id. The component id is the name
of the non-populated component. This is typically the
product name of your model engine.

58

string
GetComponentDescription()

Gets a description of your component. This
description refers to the non-populated component.
This is typically a description of what your component
does and which methods are used. E.g. ‘Finite
element based ground water model’.

59

Appendix C: Step-by-step procedure to access the InfoWorks

API from within VBA

This appendix gives step-by-step instructions that can be followed in order to access the
InfoWorks API from within the Microsoft Visual Basic environment (VBA). A VBA editor is
available in Microsoft Excel. Table 6 contains menu commands that have to be invoked
in Microsoft Excel in order to perform the actions that are referenced in the instructions
given below.

Table 6: Microsoft Excel menu commands that are required when following the step-by-step
procedure for accessing InfoWorks through its API.

Action

Active

Window

Sequence of menu items to select

Open the
VBA Editor

Microsoft
Excel

English: Tools�Macro�Visual Basic Editor (Alt+F11)
German: Extras � Makro � Visual Basic-Editor (Alt+F11)

Start the
References
dialog box

Microsoft
Visual
Basic

English: Tools � References…
German: Extras � Verweise…

Start the
VBA Object
Browser

Microsoft
Visual
Basic

English: View � Object Browser (F2)
German Ansicht � Objektkatalog (F2)

Insert a new
module

Microsoft
Visual
Basic

English: Insert � Module
German: Einfügen � Modul

Run the
current
procedure

Microsoft
Visual
Basic

English: Run � Run Sub/UserForm (F5)

German: Ausführen � Sub/UserForm ausführen (F5)

Step-by-step procedure:

1. Start Microsoft Excel, open a new workbook and save the workbook under a name of
choice.

2. Open the Microsoft Visual Basic (VBA) Editor (according to Table 6).

3. Start the References dialog box (according to Table 6).

Tick the entry ‘Wallingford Software InfoWorks 17.0 Type Library’ or another
InfoWorks Type Library that corresponds to the program version installed on your
computer:

‘10.0 Type Library’ corresponds to InfoWorks version 6.0.

‘11.0 Type Library’ corresponds to InfoWorks version 6.5.

‘12.0 Type Library’ corresponds to InfoWorks version 7.0.

‘13.0 Type Library’ corresponds to InfoWorks version 7.5.

60

‘14.0 Type Library’ corresponds to InfoWorks version 8.0.

‘15.0 Type Library’ corresponds to InfoWorks version 8.5.

‘16.0 Type Library’ corresponds to InfoWorks version 9.0.

‘17.0 Type Library’ corresponds to InfoWorks version 9.5.

If there is no such entry, then InfoWorks has not been installed correctly.

Quit the dialog box with ‘OK’.

4. Start the VBA Object Browser (according to Table 6).

Choose the object library ‘InfoWorksLib’ from the dropdown box in the upper left
corner of the window:

61

 The classes and class members (functions/methods and properties) contained in the
library can be investigated. The prototype (name, type, types of parameters) of the
selected class member is shown in the bottom section of the window.

5. Write and run a very simple program that creates an instance of the InfoWorks class
(being the only class in the library), initializes that instance, lets the user choose a
prepared InfoWorks simulation run and runs the chosen simulation:

- Insert a new module to the VBA project (according to Table 6).

- In the appearing editor window, enter the following example code:

Sub main()

 Dim iw As InfoWorksLib.InfoWorks

 Dim myRun As String

 Set iw = New InfoWorksLib.InfoWorks

 iw.InitForTest 0, "", ""

 myRun = iw.BrowseForObjects("Run", "Select a run", ">", 0, 0)

 iw.run myRun

End Sub

- Run the current procedure (according to Table 6). Therefore, the cursor must
be placed inside the body of the entered main() procedure.

62

 - The InfoWorks Object Browser dialog appears (with the title ‘Select a run’ as
defined in the corresponding method call). Select an InfoWorks CS run and
confirm with ‘Open’:

 - The dialog box disappears. The InfoWorks CS Simulation Controller appears,
monitoring the simulation progress of the simulation run that was selected in
the last step:

- The InfoWorks CS Simulation Controller will disappear when the simulation is
completed.

63

6. Start the InfoWorks CS application and view the results of the performed simulation:

Once having set the reference to the InfoWorks Type Library (step 3), a VBA program
could be written that creates and uses an object of the InfoWorks class (step 5). The
InfoWorks object offers the methods and attributes that are defined by the InfoWorks
API. In the programming example, a prepared InfoWorks run was first selected by use of
an InfoWorks-own dialog box and then simulated. See Appendix D for a complete list of
methods and properties that are provided by the InfoWorks API.

With knowledge of VBA and by using the documentation of the InfoWorks API, the
simple example program given in step 5 may be extended in order to perform more
complex tasks.

64

Appendix D: Step-by-step procedure to access the InfoWorks

API from within C#

This appendix gives step-by-step instructions that can be followed in order to access the
InfoWorks API from within SharpDevelop, the C# development environment used for this
study (see 7.2.2).

Step-by-step procedure:

1. Use the Type Library Importer tool ‘tlbimp.exe’ to convert the type library contained in
‘infoworks.exe’ into the .NET assembly ‘InfoWorksLib.dll’.

The program ‘tlbimp.exe’ is part of the Microsoft .NET Software Development Kit
(SDK) that needs to be installed (see 7.2.2). On the computer used for this study, the
file ‘tlbimp.exe’ can be found in

C:\Programme\Microsoft.NET\SDK\v2.0\Bin

2. Start SharpDevelop. The instructions given here relate to SharpDevelop
version 3.0.0.

3. Open an existing Project/Solution or create a new one. For the following steps, it is
assumed, that a new Windows console application named ‘test_API’ is created. This
is done by opening the ‘New Project’ dialog (‘File � New � Solution…’), selecting
the corresponding item and choosing the appropriate name and location:

65

 After confirming with ‘Create’, the SharpDevelopment environment may look like this:

4. Add a reference to the .NET assembly ‘InfoWorksLib.dll’, that was created in step 1.

Therefore, in the ‘Projects’ view (if needed to be displayed by View � Projects),
choose ‘Add Reference’ from the context menu (right mouse click) of the
‘References’ item of your project:

66

 The dialog box ‘Add Reference’ opens. Activate the ‘.NET Assembly Browser’ tab
and select the .NET assembly file ‘InfoWorksLib.dll’, that was created in step 1, from
the dialog that opens when pressing ‘Browse…’. The selected assembly file is
displayed in the bottom part of the ‘Add Reference’ dialog.

 Confirm the selection with ‘OK’. The reference to the InfoWorks library ‘InfoWorksLib’
has been added to the project/solution ‘test_API’:

67

5. Write and run a simple C# program that creates an instance of the ‘InfoWorksClass’
(being the only class in the library ‘InfoWorksLib’), initializes that instance, lets the
user choose a prepared simulation run and runs the chosen simulation:

- In the main program file ‘Program.cs’, change the code to the following:

using System;

using InfoWorksLib;

namespace test_API

{

 class Program

 {

 public static void Main(string[] args)

 {

 InfoWorks iw;

 string myRun;

 iw = new InfoWorksClass();

 iw.InitForTest(0, "", "");

 myRun = (string) iw.BrowseForObjects(

 "Run", "Select a run", ">", 0, 0);

 iw.Run(myRun);

 }

 }

}

- Most important in the code is the statement ‘using InfoWorksLib’ in the
second row, which makes the content of the InfoWorks library accessible in
the current source file.

68

 - Recompile and run the program code by choosing ‘Debug � Run (F5)’ from
the main menu or by pressing the arrow symbol in the tool bar on top:

 - The started program should perform exactly as the corresponding VBA
program that is described in Appendix C, step 5. The only difference is that
while the program is running, a Command Prompt window is displayed.
Note: When selecting a simulation run from the Object Browser dialog that
already was simulated, the Simulation Controller will not appear and the
selected run will not be invoked.

6. Start the InfoWorks CS application and view the results of the performed simulation
(cf. Appendix C, step 6).

As direct referencing to the InfoWorks Type Library ‘infoworks.exe’ failed (see 7.3.1), it
was necessary to create a .NET assembly out of the original type library (step 1). Once
having set the reference to the newly created assembly (step 4), a C# program could be
written that creates and uses an object of the ‘InfoWorksClass’ (step 5). That object
offers the methods and attributes that are defined by the InfoWorks API. In the
programming example, a prepared InfoWorks run was first selected by use of an
InfoWorks-own dialog box and then simulated. See Appendix D for a for a complete list
of methods and properties that are provided by the InfoWorks API.

With knowledge of C# and by using the documentation of the InfoWorks API, the simple
example program given in step 5 may be extended in order to perform more complex
tasks.

69

Appendix E: Methods and properties of the InfoWorks library

The InfoWorks Type Library which descibes the InfoWorks Application Programming
Interface (API) is embedded in the InfoWorks application file ‘infoworks.exe’. By use of
the Type Library Importer tool ‘tlbimp.exe’, contained in the Microsoft .NET Software
Development Kit (SDK) the type library has been converted into the .NET assembly
‘InfoWorksLib.dll’. That assembly, which can be inspected by the .NET IL Dissassembler
tool ‘ildasm.exe’, contains the class ‘InfoWorksClass’. In the following, the methods (see
Table 7) and properties (see Table 8) contained in this class, are documented.

As the library does not give only access to InfoWorks CS but, as far as they are licenced,
also to the other parts of the InfoWorks software (e.g. InfoWorks RS, InfoWorks WS),
class elements can be found that explicitely relate to these parts of the software.

Table 7: Methods of the ‘InfoWorksClass’, being the only class defined in the .NET assembly
‘InfoWorksLib.dll’. The .NET assembly has been created out of the InfoWorks Type Library, which
is embedded in the ‘infoworks .exe’ program file. Parameters indicated by ‘[in][out]’ are input
parameters that may be changed by the method. Parameters indicated by ‘[out]’ are output
parameters, in which values – additional to the (single) return value of the method – are returned.
All the other parameters are pure input parameters. The column ‘tested’ indicates if the method
has been tested within this study. The column ‘doc?’ indicates if the method is documented (or at
least mentioned) in the InfoWorks API documentation provided by Wallingford Ltd. The last
column indicates if the last mentioned document contains corresponding example code in Visual
Basic (VB) or C#.

Return
type

Name and parameters of method

te
s
te

d
?

d
o

c
?

E
x
a
m

p
le

?

void Archive(

string bsPath,

int32 bRecursive)

- - -

object BrowseForObjects(

object varTypes,

string bsTitle,

string bsInitialObject,

int32 bMultiSelect,

int32 hwnd)

� � VB
C#

void CheckIn(

string bsNetworkName)
� � -

string CheckOut(

string bsParentName,

string bsNewName,

int32 bBranched)

- - -

object Children(

string bsPath)
� � VB

void CompareNetworks(

string bsPath1,

string bsPath2,

string bsReportPath)

- � -

70

Return
type

Name and parameters of method

te
s
te

d
?

d
o

c
?

E
x
a
m

p
le

?

void ComputeStatistics(

string bsNetwork,

string bsStatsTemplate,

string bsFileName)

- - -

void CopyFromTransportable(

string bsPathOfTransportable,

string bsNodeToCopyFrom,

string bsNodeToCopyTo,

string bsObjectType,

int32 bWithChildren)

- - -

void CopyToTransportable(

string bsPathOfTransportable,

string bsNodeToCopyFrom,

string bsNodeToCopyTo,

string bsObjectType,

int32 bWithChildren)

- - -

void CreateArchive(

string bsPath,

int32 bCompact)

- - -

void CreateTransportable(

string bsPathOfTransportable)
- - -

void Delete(

string bsPath)
� - -

void EngineeringValidation(

string bsPathNet,

string bsPathEV,

string bsReportPath)

� � -

void Export(

string bsPath,

string bsFormat,

string bsFileName)

� � VB

void ExportGISInteractive(

string bsPath,

string bsFormat,

string bsFolderName,

[in][out] int32& pUserUnits,

[in][out] int32& pUserSystemType,

string bsTime,

[out] string& pTime,

[out] string& pTimeSubDir)

- - -

void ExportRSResults(

string bsSim,

string bsSel,

string bsFormat,

string bsFileName)

- � VB
C#

71

Return
type

Name and parameters of method

te
s
te

d
?

d
o

c
?

E
x
a
m

p
le

?

void ExportResults(

string bsSim,

string bsFormat,

string bsFileName,

string bsAttribute,

string bsSelection,

int32 bGaugeStep,

int32 bDownstreamEnd)

� � VB

void ExportResultsSnapshot(

string bsSim,

string bsFormat,

string bsFolderName,

string bsTime)

- � VB

void ExportWNControl(

string bsNetwork,

string bsControl,

string bsDemandScaling,

string bsFileName)

- - -

void ExportWNResults(

string bsSim,

string bsFormat,

string bsFileName)

- � VB

string GetLayerLabel(

int32 lLayer,

int32 lIncarnation,

int32 bNetworkNotResults,

int32 bUserSystemType)

- - -

string GetLayerName(

int32 lLayer,

int32 lIncarnation,

int32 bNetworkNotResults,

int32 bUserSystemType,

int32 bUseTabNames)

- - -

int32 GetNumberOfLayers(

int32 lIncarnation,

int32 bNetworkNotResults)

- - -

string GetRegistryString(

string bsSection,

string bsEntry)

- - -

string Import(

string bsParent,

string bsName,

string bsType,

string bsFormat,

object[]& saFileNames)

� � VB

void ImportCCTVData(

string bsNet,

string bsFile)

- - -

72

Return
type

Name and parameters of method

te
s
te

d
?

d
o

c
?

E
x
a
m

p
le

?

void ImportExternalNetwork(

string bsCatGrp,

string bsGIUDName,

string bsPath,

string bsName)

- - -

void InitForTest(

int32 nAppType,

string bsUserName,

string bsPassword)

� � VB
C#

void Initialise(

int32 nAppType,

string bsUserName,

string bsPassword)

� - -

string LocalRootGUID() � � VB
void MSDEConnectExisting(

string bsServer,

string bsDatabase,

string bsUID,

string bsPWD,

string bsLocalRoot)

- - -

string MakeValidPathComponent(

string bsPathComponent)
- - -

void NewMasterDatabase(

string NewDatabasePath)
- - -

string NewObject(

string ParentPath,

string ObjectName,

string ObjectType)

� � VB

string NewObjectTransportable(

string bsPathOfTransportable,

string ParentPath,

string ObjectName,

string ObjectType)

- - -

string NewRSSim(

string bsRunPath,

string bsSimName,

string bsBoundaryPath,

string bsRulesPath)

- - -

void NewRainfallEvent(

string bsName,

string bsParameters)

- - -

string NewSim(

string bsRunPath,

string bsSimName,

string bsRainfallOrFlowSurveyName)

� � VB

73

Return
type

Name and parameters of method

te
s
te

d
?

d
o

c
?

E
x
a
m

p
le

?

string NewWNSim(

string bsRunPath,

string bsSimName,

string bsDSPath,

string bsCONPath)

- - -

void PolygonAreaTakeOff(

string bsNetworkName,

string bsCategoryName,

string bsHTMLLogFile,

int32 bSystemSurfaceMethod,

int32 bUncodedSplit,

string bsUncodedSystem,

int16 nUncodedSurface)

- - -

void PolygonDeleteAll(string bsNetworkName) - - -
void PolygonExportCSV(

string bsNetworkName,

string bsCsvName,

string bsCategoryToExport,

int16 nPrecision)

- - -

void PolygonImportCSV(

string bsNetworkName,

string bsCsvName,

string bsCategoryToImport)

- - -

void PolygonIntersect(

string bsNetworkName,

string bsCategoryNameA,

string bsCategoryNameB,

string bsCategoryNameC,

string bsHTMLLogFile)

- - -

void PutRegistryString(

string bsSection,

string bsEntry,

string bsValue)

- - -

void RSRun(string bsPath) - � VB
void Rename(

string bsPath,

string bsNewName)

- - -

void Restore(

string bsPath,

int32 bRecursive)

- - -

void Run(string bsPath) � � VB
void SetFlagAll(

string bsNetworkName,

string bsObjectName,

string bsFieldName,

string bsFlag)

- - -

74

Return
type

Name and parameters of method

te
s
te

d
?

d
o

c
?

E
x
a
m

p
le

?

void Update(

string bsPath,

string bsFormat,

string bsFileName)

- - -

void WNOverviewToCSV(

string bsNetwork,

string bsOverviewSet,

string bsFileName,

int32 bAppendToFile)

- - -

void WNRun(string bsPath) - � VB

Table 8: Properties of the ‘InfoWorksClass’ being the only class defined in the .NET assembly
‘InfoWorksLib.dll’. The .NET assembly has been created out of the InfoWorks Type Library, which
is embedded in the ‘infoworks.exe’ program file. Some of the properties accept parameters (third
column). As apposed to Visual Basic, properties in C# are not able to accept parameters. Thus,
when using the assembly from C#, the properties listed here are accessed in the form of
corresponding methods named get_<property> and set_<property> where
<property> is the name of the property. These methods accept the property parameters as
method parameters plus, in case of the set-method, one more parameter representing the new
value that the property shall take. For example, in C# the property Value with the parameters
string bsPath, string bsFieldName is accessed via the methods
object get_Value(string bsPath, string bsFieldName) and
void set_Value(string bsPath, string bsFieldName, object pVal),
respectively. The column ‘tested’ indicates if the property has been tested within this study. The
column ‘doc?’ indicates if the property is documented (or at least mentioned) in the InfoWorks API
documentation provided by Wallingford Ltd. The last column indicates if the last mentioned
document contains corresponding example code in Visual Basic (VB) or C#.

Type Name of Property Property parameters

te
s
te

d
?

d
o

c
?

E
x
.?

string CurrentArchive - - - -
int32 DialogParent - - - -
string DisplayName string bsPathName � � VB
int32 Exists string bsName � � VB
string LocalRoot - - � VB
string MasterDatabase - � - C#
string Network string bsPath - �

1 -
string Parent string bsPath � � VB
string ShortDisplayName string bsPath � � VB
int32 ShowProgress - - - -
string Type string bsPathName � � VB
object Value string bsPath,

string bsFieldName
� � VB

string Version - - - -

1 In the API documentation, the method GetNetwork(string bsPath) is described.

75

Appendix F: Class Diagram of API test application

Figure 26: Class diagram of the C# application developed for the API test.

76

Appendix G: Evaluation of simulation results obtained by

running an OpenMI-linked system

The following figures refer to the simulations carried out within Scenario B, described in
section 5.4.

Figure 27: Comparison of simulated flows leaving the northern system (graph in upper right sub-
window) with the inflow that has entered the southern system (graph in lower right sub-window).

Data transfer has been realized by OpenMI. Both model Runs (‘run_OMI_north’ and
‘run_OMI_south’; see object tree of the Catchment Group, left) have been invoked by the OATC

Configuration Editor in which the link between northern and southern network was realized
(see 5.4).

77

Figure 28: Comparison of flow hydrographs simulated in the original, entire InfoWorks CS model
(case ‘ORIG’, blue graphs) and in the OpenMI-coupled system of two separated sub-models
(case ‘OPENMI’, green graphs). For the sewer section that is directly connected to the outlet,

OPENMI calculates a higher peak of the first wave than ORIG (top). Some sewer sections
upstream too, a difference in the first (negative) peak can be observed (middle). The deviation of
flows is also visible in the conduit that directly follows the node which connects the northern with

the southern sub-system (bottom).

78

Figure 29: Further backtracking of the differences in flows that were simulated in the OpenMI-
linked system (green graphs) and in the original, entire InfoWorks CS model (blue graphs),

respectively (see 5.4 in the main text for an explanation).

79

Appendix H: OpenMI Demo Models

Demo Models:

The OpenMI Association Technical Committee (OATC) develops and disseminates
demo models which can be downloaded from:
http://public.deltares.nl/download/attachments/7405691/

OpenMIDemoModels.zip

Five different OpenMI components (.omi-files) are provided. The components are based
on three different model engines (provided as .NET assemblies) which are also given. All
these components comply with the OpenMI 1.4 standard and thus, can be run in the
OpenMI Configuration Editor 1.4.0.0.

Namespace: Oatc.OpenMI.Tools

.NET Assembly Component (.omi)
DataMonitor.dll DataMonitor

Namespace: Oatc.OpenMI.Examples.ModelComponents.SpatialModels

.NET Assembly Component (.omi)
RiverModel.dll LargeRiverModel
GroundWaterModel.dll LocalGroundWaterModel

LargeGroundWaterModel
RegionalGroundWaterModel

Models contained in the OpenMI Software Development Kit (SDK):

The Software Development Kit (SDK) of the OpenMI release 1.4.0.0 contains further
models. The OpenMI SDK is available at:
http://sourceforge.net/project/downloading.php?

group_id=136874&filename=Oatc.SDK_1.4.0.0.zip

The SDK contains the following components which depend on corresponding .NET
assemblies.

Namespace: org.OpenMI

.NET Assembly Component (.omi)
Tools.EventLogger.dll EventLogger.omi
Utilities.AdvancedControl.dll IterationController.omi

OptimizationController.omi
SSD.omi

Namespace: Oatc.OpenMI.Examples.ModelComponents

.NET Assembly Component (.omi)

SimpleRiver.Wrapper.dll SimpleRiverRhine.omi

However, the required .NET assemblies are not part of the SDK and so, the components
are nor ready for use. The model engines are delivered in the form of C# source code.
Before the OpenMI components can be used, the assemblies need to be built by
compiling the corresponding source code.

80

Bibliography

Gijsbers P., Gregersen J., Westen S., Dirksen F., Gavardinas C. and Blind M. (2007a).
Part B - Guidelines for the OpenMI (version 1.4), in OpenMI Document Series,
edited by I. Tindall.

Gijsbers P., Westen S., Rob Brinkman and Curn J. (2007b). Part F - org.OpenMI.Utilities
technical documentation for the OpenMI (version 1.4), in OpenMI Document
Series, edited by J. Gregersen and P. Sinding.

Gregersen J., Westen S., Hummel S. and Brinkman R. (2007). Part C - the
org.OpenMI.Standard interface specification For OpenMI (Version 1.4), in The
OpenMI Document Series, edited by P. Gijsbers.

openmi-life.org (2007a). Report Defining the Scheldt Use case a : linking hydraulic sewer
and river models, OpenMI-LIFE - Task B1.

openmi-life.org (2007b). Report Defining the Scheldt Use case b : linking an upstream
nontidal river model to a downstream tidal river model, OpenMI-LIFE - Task B1.

Schumacher F., Gebauer U., Pawlowsky-Reusing E., Meier I., Schroeder K., Leszinski
M. and Heinzmann B. (2007). Integrated Sewage Management, Project acronym:
ISM, Sub-study: Water quality simulation of river Spree and its canals (reach
Charlottenburg) under consideration of combined sewer overflows for a storm
event in September 2005, Final Report, KompetenzZentrum Wasser, Berlin.

Sonnenberg H. (2008). Literature Review on the Open Modelling Interface and
Environment (OpenMI); Project acronym: SAM-CSO, Project Report, Berlin Centre
of Competence for Water, Berlin, Germany.

WSL (2007). The InfoWorks/InfoNet COM Interface, all rights reserved Wallingford
Software Ltd., 31 pages, document provided by Wallingford Software Ltd. in 2007.

