

# REPORT

Cicerostr. 24 D-10709 Berlin Germany Tel +49 (0)30 536 53 815 Fax +49 (0)30 536 53 888 www.kompetenz-wasser.de

# Selection of a watershed model used to predict the effects of management decisions on water quality based on multicriteria comparison

Project acronym: AQUISAFE 1

by Torsten Strube

for Kompetenzzentrum Wasser Berlin gGmbH

Preparation of this report was financed through funds provided by



Berlin, Germany 2009

© Copyright 2009 by the KompetenzZentrum Wasser Berlin gGmbH. All rights including translation into other languages, reserved under the Universal Copyright Convention, the Berne Convention or the Protection of Literacy and Artistic Works, and the International and Pan American Copyright Conventions.

#### **Important Legal Notice**

**Disclaimer**: The information in this publication was considered technically sound by the consensus of persons engaged in the development and approval of the document at the time it was developed. KWB disclaims liability to the full extent for any personal injury, property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of application, or reliance on this document.

KWB disclaims and makes no guaranty or warranty, expressed or implied, as to the accuracy or completeness of any information published herein. It is expressly pointed out that the information and results given in this publication may be out of date due to subsequent modifications. In addition, KWB disclaims and makes no warranty that the information in this document will fulfil any of your particular purposes or needs.

The disclaimer on hand neither seeks to restrict nor to exclude KWB's liability against all relevant national statutory provisions.

#### Wichtiger rechtlicher Hinweis

**Haftungsausschluss** Die in dieser Publikation bereitgestellte Information wurde zum Zeitpunkt der Erstellung im Konsens mit den bei Entwicklung und Anfertigung des Dokumentes beteiligten Personen als technisch einwandfrei befunden. KWB schließt vollumfänglich die Haftung für jegliche Personen-, Sach- oder sonstige Schäden aus, ungeachtet ob diese speziell, indirekt, nachfolgend oder kompensatorisch, mittelbar oder unmittelbar sind oder direkt oder indirekt von dieser Publikation, einer Anwendung oder dem Vertrauen in dieses Dokument herrühren.

KWB übernimmt keine Garantie und macht keine Zusicherungen ausdrücklicher oder stillschweigender Art bezüglich der Richtigkeit oder Vollständigkeit jeglicher Information hierin. Es wird ausdrücklich darauf hingewiesen, dass die in der Publikation gegebenen Informationen und Ergebnisse aufgrund nachfolgender Änderungen nicht mehr aktuell sein können. Weiterhin lehnt KWB die Haftung ab und übernimmt keine Garantie, dass die in diesem Dokument enthaltenen Informationen der Erfüllung Ihrer besonderen Zwecke oder Ansprüche dienlich sind.

Mit der vorliegenden Haftungsausschlussklausel wird weder bezweckt, die Haftung der KWB entgegen den einschlägigen nationalen Rechtsvorschriften einzuschränken noch sie in Fällen auszuschließen, in denen ein Ausschluss nach diesen Rechtsvorschriften nicht möglich ist.

### Colophon

#### Title

Selection of a watershed model used to predict the effects of management decisions on water quality based on multi-criteria comparison, Deliverable 2.1 of WP 2 of the Aquisafe project

#### Authors

Torsten Strube Kompetenzzentrum Wasser Berlin gGmbH

#### **Quality Assurance**

Gesche Grützmacher, Kompetenzzentrum Wasser Berlin gGmbH, Berlin, Germany Kai Schroeder, Kompetenzzentrum Wasser Berlin gGmbH, Berlin, Germany Emmanuel Soyeux, Veolia Environnement Recherche & Innovation (VERI), Paris, France

#### Publication / Dissemination approved by technical committee members:

Christelle Pagotto, Veolia Water, Technical Direction, Saint-Maurice, France Boris David, Veolia Water, Veolia Water, Technical Direction, Saint-Maurice, France Magali Dechesne, Veolia Environnement Recherche & Innovation (VERI), Paris, France Emmanuel Soyeux, Veolia Environnement Recherche & Innovation (VERI), Paris, France Nicolas Rampnoux, Veolia Environnement Recherche & Innovation (VERI), Paris, France Chibby Alloway, Veolia Water North America, Pleasant Hill, CA., USA Guy Randon, Veolia Eau Région Ouest, Rennes, France Lenore Tedesco, Center for Earth and Environmental Science, Department of Earth Sciences, Indiana University – Purdue University, Indianapolis, USA Norbert Litz, Umweltbundesamt, Berlin, Germany Thomas Renoult, Société d'Environnement, d'Exploitation et de Gestion de Travaux, St. Malo, France Kai Schroeder, Kompetenzzentrum Wasser Berlin gGmbH, Berlin, Germany Yann Moreau-Le Golvan, Kompetenzzentrum Wasser Berlin gGmbH, Berlin, Germany

#### **Deliverable number**

Aquisafe 1 D 2.1

### Abstract

The Aquisafe project aims at mitigation of diffuse pollution from agricultural sources to protect surface water resources. The first project phase (2007-2009) focused on the review of available information and preliminary tests regarding

- (i) most relevant contaminants,
- (ii) system-analytical tools to assess sources and pathways of diffuse agricultural pollution,
- (iii) the potential of mitigation zones, such as wetlands or riparian buffers, to reduce diffuse agricultural pollution of surface waters and
- (iv) experimental setups to simulate mitigation zones under controlled conditions.

The present report deals with (ii) and aims at identifying numerical modelling tools that can assess the origin of contaminants as well as the impact of different mitigation measures regarding water quality aspects on a catchment scale.

In order to test the identified modelling tool in the further course of the Aquisafe project a case study was found in Brittany (France) in agreement with Veolia Eau: the small watershed of the river Ic. Due to intensive agricultural land use the nitrate concentration exceeds the threshold for surface water used for drinking water purpose (which is the main concern of Veolia Eau). Additionally, trace contaminants (pesticides) were detected in the surface water ever since measurements have been carried out. Therefore modelling shall mainly support the water supplier in actions aiming at reducing the nitrate concentration in the surface water. An additional task could later on be the application of the model in order to assess the effectiveness of mitigation measures against trace contamination.

In order to choose the most appropriate model a model comparison was carried out using a three step approach. The first step was a screening of different information sources and resulted in the identification of 44 existing models. The second step was a pre-selection according to essential criteria in order to identify models that fulfil the basic requirements for a) the Ic nitrate issue and b) the Aquisafe trace contaminant issue. In a third step a multi-criteria analysis was carried out using 6 additional criteria followed by a final recommendation.

The essential criteria used for the pre-selection of the models were a) the inclusion of major hydrological processes, b) the inclusion of the nitrogen cycle (for the lc nitrate issue) or the inclusion of trace contaminants (for the Aquisafe trace contaminant issue) c) the size of catchments that can be modelled, d) the temporal and spatial resolution and e) the possibility to include management options and/or mitigation measures. For the lc nitrate issue this resulted in the selection of the models: HBV-NP, HSPF, SWIM, SWAT, WASMOD and Mike She. For the Aquisafe trace contaminant issue only four models remained after the pre-selection process: DRIPS, HSPF, SWAT and Mike She.

Additional criteria were then applied and resulted in the recommendation to use the model SWAT for further investigations in both cases due to sufficient accuracy and included processes (full hydrological model with water quality simulation (nutrients and trace contaminants) as well as a wide range of successful applications (amongst others).

This report presents a wide range of models with their capabilities and limits. It contains criteria which were identified with the stakeholders in order to choose the most appropriate model. The approach presented in this report shall support the decision process of selecting a model for a certain problem regarding water quality and includes only a recommendation. The final decision on which model shall be applied, will be taken in agreement with the stakeholders Veolia Eau and Goel'Eaux.

## Acknowledgements

The authors would like to thank all the project sponsors and partners that are involved in the modelling case study in the Ic watershed and who participated in the elaboration of this report.

We would like to thank especially:

Nicolas Rampnoux (Veolia Environment Research and Development)

Christelle Pagotto, Boris David (Veolia Eau Technical Direction)

Guy Randon, André Crocq (Veolia Eau Région Ouest)

Bernard Sautjeau, Thomas Renoult (SEEGT)

Caroline Guegain (Goel'Eaux)

## **Table of Contents**

| Chapter 1 Introduction                                         | 1  |
|----------------------------------------------------------------|----|
| 1.1 Background of the project                                  | 1  |
| 1.2 Aim of the Aquisafe project                                | 1  |
| 1.2.1 General aim of the project                               | 1  |
| 1.2.2 Aims and strategy of work package 2                      | 1  |
| Chapter 2 Material and Methods                                 | 3  |
| 2.1 General issues                                             | 3  |
| 2.2 Method of the model comparison                             | 3  |
| Chapter 3 Results                                              | 5  |
| 3.1 Results of the model screening                             | 5  |
| 3.2 Pre-selection of models that fulfil the basic requirements | 5  |
| 3.2.1 Definition of criteria                                   | 5  |
| 3.2.2 Results of the pre-selection                             | 7  |
| 3.3 Evaluation of models by a multi-criteria analysis          | 8  |
| 3.3.1 Definition of criteria                                   | 8  |
| 3.3.2 Application of the criteria                              | 12 |
| Chapter 4 Summary and Conclusions                              | 17 |

## List of Figures

## List of Tables

| Table 1: Overview of the models identified for model comparison (for further details see      |    |
|-----------------------------------------------------------------------------------------------|----|
| Appendix A)                                                                                   | 5  |
| Table 2: Overview of the essential criteria for the pre-selection of models                   | 3  |
| Table 3: Overview of the criteria and requirements for the two modeling issues within the     | į. |
| Aquisafe project                                                                              | 3  |
| Table 4: Ranking of the 6 most suitable models for the Ic nitrate issue according to the      |    |
| additional criteria (details on the ranking within the criteria is given in chapter 3.3.1) 13 | 3  |
| Table 5: Ranking of the 4 most suitable models for the trace contaminant issue                |    |
| according to the additional criteria1                                                         | 5  |
| Table 6: Basic information on 44 hydrological models    23                                    | 3  |

## List of Abbreviations

| ACRU                   | Model developed by the Agricultural Catchments Research                                                                |
|------------------------|------------------------------------------------------------------------------------------------------------------------|
|                        | <i>Unit</i> of the Department of Agricultural Engineering of the University of Natal in Pietermaritzburg, South Africa |
| ANIMO                  | Agricultural NItrogen MOdel                                                                                            |
| AGNPS                  | Agricultural Non-Point Source pollution model                                                                          |
| ArcEgmo                | GIS-based Catchment Model                                                                                              |
| Aquavallee/ Aquaplaine | Empirical model approaches for hot-spot identification                                                                 |
| CAWAQS                 | CAtchment WAter Quality Simulator                                                                                      |
| CE-Qual-W2             | United States Army Corps of Engineers 's Two Dimensional Water Quality model                                           |
| Claws/Owls             | Coupled Landscape and Water System / Object Watershed Link Simulation                                                  |
| CREAMS                 | Chemicals, Runoff and Erosion from Agricultural Management                                                             |
|                        | Systems                                                                                                                |
| DRIPS                  | Drainage, Runoff and spray drift Input of Pesticides in Surface waters                                                 |
| EPA                    | Environmental Protection Agency                                                                                        |
| FOOTPRINT              | Functional Tools for Pesticide Risk Assessment and<br>Management                                                       |
| GLEAMS                 | Groundwater Loading Effects of Agricultural Management<br>Systems                                                      |
| GR                     | Modèles Hydrologiques du Génie Rural                                                                                   |
| GUI                    | Graphical User Interface                                                                                               |
| HBV-NP                 | Hydrologiska Byråns Vattenbalansmodell for Nitrogen and Phosphorous                                                    |
| HSPF                   | Hydrological Simulation ProgramFortran                                                                                 |
| INCA                   | Integrated Nitrogen in CAtchments                                                                                      |
| KINEROS                | KINematic Runoff and EROSion model                                                                                     |
| MAGIC                  | Model of Acidification of Groundwater in Catchments                                                                    |
| MHYDAS                 | Modélisation HYdrologique Distribuée des AgroSystèmes                                                                  |
| MIKE-SHE               | MIKE - Système Hydrologique Européen                                                                                   |
| MONERIS                | MOdelling Nutrient Emissions in RIver Systems                                                                          |
| PEARL/GeoPEARL         | Pesticide Emission Assessment at Regional and Local scales                                                             |
| PIK                    | Potsdam Institute of Climate Impact Research                                                                           |
| PRZM                   | Pesticide Root Zone Model                                                                                              |
| PRZM3                  | Pesticide Root Zone Model 3                                                                                            |
|                        |                                                                                                                        |

| REM      | Register of Ecological Models                                                               |
|----------|---------------------------------------------------------------------------------------------|
| REMM     | Riparian Ecosystem Management Model                                                         |
| SACADEAU | Système d'Acquisition de Connaissances pour l'Aide à la<br>Décision sur la qualité de l'eau |
| SMHI     | Swedish Meteorological and Hydrological Institute                                           |
| SWAT     | Soil and Water Assessment Tool                                                              |
| SWIM     | Soil and Water Integrated Model                                                             |
| USDA     | United States Department of Agriculture                                                     |
| WasMod   | Water and Substance Simulation Model                                                        |
| WASP     | Water Quality Analysis Simulation Program                                                   |

## Chapter 1 Introduction

#### 1.1 Background of the project

Surface water is a key element for drinking water supply in many countries. In Europe over 800 major reservoirs serve primarily this purpose. Usually, these waters do not meet drinking water standards and water treatment is needed. The best way to protect drinking water is to prevent the contaminants from entering source water. Therefore source water protection is the first and most important barrier in a multi-barrier approach to ensure safe drinking water supply.

In rural and semi-rural areas many different sources of potential pollutants contribute to source water contamination. They include agriculture (agrochemicals, biosolids application and pasture), underground or above-ground fuel storage tanks, septic systems, and storm water runoff from streets and lawns. Generally agriculture is considered as one of the major causes of surface water pollution. The discharge of nutrients (nitrogen and phosphorus) and pesticides into surface water results from crop growing while other contaminants originate primarily from animal breeding (e.g. pharmaceuticals, antibiotics, pathogens) or from human activities.

Eutrophication affects a significant number of lakes, reservoirs and rivers and is the wellknown issue currently impacting drinking water resources. It has therefore been studied intensively. The presence of micro pollutants is not systematically monitored, however it is known that some substances are very mobile and tend to resist degradation. Traces ( $\mu$ g/L range) of such substances have been detected in numerous surface water bodies (lakes, reservoirs and rivers). As agriculture is intensifying and land use is changing in many areas, the impact of diffuse pollution on water quality is expected to be more pervasive in the future.

#### 1.2 Aim of the Aquisafe project

#### 1.2.1 General aim of the project

The overall research program Aquisafe aims at identifying and analyzing key processes and developing practical methods and tools for the mitigation of emerging contaminants in rural and semi rural areas for the protection of drinking water sources. The practical methods that are being tested are nature-based systems such as constructed wetlands or riparian corridors.

#### 1.2.2 Aims and strategy of work package 2

Work package 2 within the Aquisafe project aims at identifying modelling tools that can assess the impact of different mitigation measures regarding water quality aspects on a

catchment scale. The most appropriate modelling tool should facilitate the decision on the location of a mitigation zone and show how effective such a mitigation measure could be (in comparison to other measures). Common knowledge is that there is no such thing as an optimal model for universal application. Every problem, target objective and physical framework is different. The outcome of this work package shall therefore facilitate the choice for a model for given prerequisites by giving information on the focus and requirements of different models as a basic decision support.

In order to meet these aims, the strategy of work package 2 covers the following tasks:

- To analyse the characteristics, possibilities and limitations of numerous existing models regarding criteria that were defined in agreement with the stakeholders.
- To compare the models and to recommend appropriate models for certain applications.
- To implement an appropriate model on a case study (in the further course of the project).

This report presents the results of the two first tasks. The application of the selected model in the case study was initially planned to be carried out in the next phase of the Aquisafe project. Due to a strong interest of Veolia to apply the model in the Ic watershed (see Figure 1) the application commenced directly following the completion of the presented model comparison.



Figure 1: Location of the Ic watershed (Goel'eaux 2007) (Discover France 2007)

This report will present the results concerning the evaluation of existing models that could be possibly used in the Ic case study. Apart from other criteria that will be detailed in the report, the selected model primarily has to be able to deal with nitrate concentrations and if possible also trace contaminants in a high spatial and temporal resolution.

Due to the high priority of the nitrate issue, the criteria for choosing the model for the lc watershed differ in part from those that will apply for the overall Aquisafe project. For transparency reasons we have therefore decided to address the two cases separately in the further course of the study: a) the lc nitrate issue and b) the Aquisafe trace contaminant issue.

## Chapter 2 Material and Methods

#### 2.1 General issues

The models investigated were found to have a wide range of applications. For our purpose – hydrological model with nutrient cycling, trace contaminant leaching and inclusion of certain management practices (wetlands, riparian zones, etc.) – none of the models fulfilled the criteria completely. In terms of trace contaminants (e.g. pesticides) only 8 models consider this component and concurrently fail in other important criteria like nutrients (e.g. DRIPS) or catchment scale (e.g. OPUS, PEARL, PRZM). Regarding management practices some models have only wetlands included (e.g. HBV-NP); others consider a wide variety of possible management practices except wetlands.

In consequence a three step approach was used that is described in detail below. This method follows mainly the approach by Quilbé et al. (2006).

#### 2.2 Method of the model comparison

#### 1) Screening of models:

Different sources were screened for hydrological, ecological and nutrient load models:

- 1) the Register of Ecological Models (REM)<sup>1</sup>",
- 2) review papers on model comparison (major references: Quilbé et al., 2006, Arheimer & Olsson, 2005, Payraudeau, 2002).

About 320 models were found during this first screening. On the basis of personal experience at the Berlin Centre of Competence for Water, interviews with local experts (e.g. M. Bach, Uni Giessen, H. Behrends, IGB, Berlin) and under consideration of interests communicated by Veolia, 44 of these were selected for further investigation. Those models were listed and first basic information – if available - was compiled.

#### 2) Pre-selection of models

a) Defining criteria for a pre-selection of the models that are most likely to meet the basic requirements:

The criteria in general were defined and presented to the technical committee during meetings in Rennes in July/August 2007. The application of criteria used for the preselection (so-called essential criteria) should exclude models from further investigations that did not meet the basic requirements. Different essential criteria were defined, according to

<sup>&</sup>lt;sup>1</sup> http://www.wiz.uni-kassel.de/eco\_model/server.html

the different issues, target objectives and physical framework of a) the Ic-nitrate issue and b) the Aquisafe trace contaminant issue. Further information on the chosen essential criteria is given in chapter 3.2.1.

b) Application of the essential criteria:

The essential criteria for a) the lc-nitrate issue and b) the Aquisafe trace contaminant issue were then applied to the available models found in step 1). If a model did not meet each single essential criterion it was not included in the further multi-criteria analysis. The outcome of this step was a reduced list of models for each of the two regarded issues, that could then be subject to further investigations.

#### 3) Multi-criteria evaluation of the models:

a) Definition of criteria for the multi-criteria analysis:

For the multi-criteria analysis so-called additional criteria were defined that would enable to rank the remaining models with respect to the requirements of both issues mentioned above. Details on the criteria defined are given in chapter 3.3.1.

b) Multi-criteria evaluation of the models:

The pre-selected models were then evaluated by a ranking method depending on the level of achievement of the criteria. The evaluation is based on the information collected by literature reviews, information on the database/web and interviews with experts. For the scores we distinguished among "+", "-", " $\pm$ " and "0":

"+": good agreement with the requirements of the criteria,

"-": no agreement with the requirements of the criteria,

"±": some agreement with the requirements of the criteria,

"0": no information available.

For more detailed scoring (e.g. giving points from 1 to 5 as described in Quilbé et al. 2006) sufficient information was not available. Giving scores would feign a higher accuracy of the decision basis than available.

## Chapter 3 Results

#### 3.1 Results of the model screening

Appendix A)

Table 1 gives an overview of the models found by screening of different sources (see chapter 2.2). Models that did not fit at all were directly excluded.

#### Table 1: Overview of the models identified for model comparison (for further details see

| ACRU                  | FOOTPRINT | MONERIS      | REMM      |
|-----------------------|-----------|--------------|-----------|
| ANIMO                 | GLEAMS    | OPUS         | SACADEAU  |
| AGNPS                 | GR        | PEARL / GEO- | SHETRAN   |
| ARC/EGMO              | HBV-NP    | PEARL        | STONE     |
| Aquaplaine/Aquavallee | HSPF      | PESTAN       | SWAT      |
| CAWAQS                | INCA      | PLOAD        | SWIM      |
| CE-Qual-W2            | KINEROS   | POLA         | TELEMAC   |
| Claws/Owls            | MACRO     | PRZM         | TNT(2)    |
| CREAMS                | MAGIC     | PRZM3        | WASIM-ETH |
| DRIPS                 | MHYDAS    | QHM          | WASMOD    |
| EPIC                  | MIKE SHE  | QUAL2K       | WASP      |
|                       |           |              | WHI Unsat |

#### 3.2 Pre-selection of models that fulfil the basic requirements

#### 3.2.1 Definition of criteria

An overview of the essential criteria that were applied to the 44 identified models is given in Table 2. A detailed description of the different criteria can be found in the further course of the chapter.

| Criteria                                                      | Ic nitrate issue                                     | Aquisafe trace contaminants issue |  |  |  |
|---------------------------------------------------------------|------------------------------------------------------|-----------------------------------|--|--|--|
| 1) Included Model Components                                  |                                                      |                                   |  |  |  |
| a) Hydrological processes                                     | entire hydro                                         | logical cycle                     |  |  |  |
| b) Hydrochemical compounds                                    | nitrogen cycle and<br>possibly trace<br>contaminants |                                   |  |  |  |
| 2) Size of the catchment                                      | < 100 km <sup>2</sup>                                | <100 - 10000 km²                  |  |  |  |
| 3) Resolution                                                 |                                                      |                                   |  |  |  |
| a) Spatial resolution                                         | high spatia                                          | al resolution                     |  |  |  |
| b) Temporal resolution                                        | daily and/or monthly time step                       |                                   |  |  |  |
| 4) Inclusion of management<br>practices / mitigation measures | yes yes                                              |                                   |  |  |  |

Table 2: Overview of the essential criteria for the pre-selection of models.

#### 1) Model Components

The model components are the basis for the purpose and the application of a model. Generally, hydrological models consider different processes or components, such as snow smelt, evapotranspiration, run off, subsurface flow and groundwater flow, etc. Beyond this some models deal with the nitrogen-, carbon- and phosphorus cycle, plant growth and pesticides leaching.

In order to find effective measures against high concentrations of nitrate and / or trace contaminants in the surface water it is fundamental to identify the source and the major pathways. Thus for both regarded issues the model has to consider the entire water cycle connected with different pathways for the run-off, subsurface- and groundwater (criterion 1a).

#### The Ic nitrate issue:

For the Ic nitrate issue the model additionally needs to comprise the nitrogen balance (criterion 1b) with the input (fertiliser), the uptake (plants growth) and leaching.

#### The trace contaminant issue:

For the trace contaminant issue the model will have to include the simulation of application, transport and degradation of trace contaminants (criterion 1b).

#### 2) Size of the catchment

Hydrological models are usually developed for a certain spatial scale. Models exist for a field scale and a range between small (<100 km<sup>2</sup>)-, meso (100-20000 km<sup>2</sup>)- and large (>20000

km<sup>2</sup>) scale catchments. From such models different results can be expected: a model, which aims at comparing different catchments on a European scale regarding nutrient erosion, cannot make predictions for a small catchment and also vice versa.

#### The Ic nitrate issue:

The lc-watershed covers an area of about 70 km<sup>2</sup>, and the focus lies on assessing the effectiveness of different mitigation measures. Thus a model for a small catchment will be needed (less than 100km<sup>2</sup>). On the other hand, considering a model also applicable to larger catchments (= mesoscale) allows more flexibility for future case studies. Therefore also models for mesoscale catchments were considered.

#### The Aquisafe trace contaminant issue:

As the model shall be applied to different catchments the model should be able to handle a wide range of catchments sizes (from  $<100 \text{ km}^2 \text{ up to } 100,000 \text{ km}^2$ ).

#### 3) Temporal and spatial resolution

The project will investigate the effects of mitigation measures on water quality. Most of these measures target at preventing the run-off flow of nutrient/trace substances to the surface water. For such investigation it is necessary to use a model which is able to work on a high temporal and spatial resolution in order to analyse these events adequately.

#### The Ic nitrate/Aquisafe trace contaminants issue:

The small Ic-watershed needs a daily or monthly time step. For the modelling of meso-scale catchments with the same purpose (mitigation measures) a daily or monthly time step with a high spatial resolution would also be useful.

#### 4) Management practices / Mitigation measures

It is necessary to have management tools and mitigation measures included in the model in order to assess their effect on water quality and to compare different measures.

This criterion comprises all possible measures to mitigate the nutrients' and trace contaminants' entry into the surface water like riparian zones, constructed wetlands and buffer strips but also alternative tilling, different crop schedules and options in days of application regarding fertiliser and pesticides.

#### The Ic nitrate/Aquisafe trace contaminant issue:

For both model applications the inclusion of different management practices and mitigation measures are essential. In addition, the more management practices or mitigation measures can be distinguished the better recommendations the model can provide.

#### 3.2.2 Results of the pre-selection

The models selected for further investigations for the Ic nitrate issue were: HBV-NP, HSPF, SWIM, SWAT, WASMOD and Mike She. All other models fail in at least one of the essential

criteria described above (Chapter 3.2.1). The criteria most models failed in were their limitation to field scale, the absence of nitrogen components as well as of management practices / mitigation measures.

The following models complied with the essential criteria for the trace contaminant issue: DRIPS, HSPF, SWAT and Mike She. The main elimination criterion for that issue was the trace contaminant module in the model.

If the aim of modelling was restricted to identifying sources and pathways – without including possible management practices – the models INCA and TNT would also be pre-selected.

#### 3.3 Evaluation of models by a multi-criteria analysis

#### 3.3.1 Definition of criteria

Table 3 gives a summary of the additional criteria used for the multi-criteria evaluation. Details are given below.

## Table 3: Overview of the criteria and requirements for the two modeling issues within the Aquisafe project.

| Criteria                                                             | Ic-nitrate issue Aquisafe- trace contaminant iss |                              |
|----------------------------------------------------------------------|--------------------------------------------------|------------------------------|
| Data requirements                                                    | low (medium to high acceptable)                  | low                          |
| Presence of a Graphical User<br>Interface (GUI)                      | yes                                              | yes                          |
| Possibility to carry out an<br>uncertainty analysis                  | yes                                              | yes                          |
| Efforts for data acquisition, pre-<br>/post processing and modelling | low                                              | low                          |
| Ownership of the model for further development                       | open source                                      | open source                  |
| Popularity / Support /<br>Documentation for the model                | widely used, good support                        | widely used,<br>good support |

#### 1) Types of data needed (data requirements)

The modelling procedure needs data as information about the catchment (soil, land use, slope etc.), as input data (precipitation, temperature and wind speed etc.) and for calibration/verification of the modelling results (e.g. discharge, nitrate at the catchments outlet).

The types of data required can be grouped as follows:

- Meteorological data: precipitation, solar radiation, air humidity, wind speed
- Soil data: number of layers, texture, water capacity and water conductivity of each layer, land use map, as georeferenced data (GIS) or in an analogue map
- Hydrological data: Water discharge, nitrate concentrations, pesticide concentrations at the catchment outlet (calibrating/validating the model)
- Management data: Agricultural practices in the watershed (day of sowings, day of harvest, day of pesticides operation, etc.)

For application in an unknown catchment little data requirements are generally beneficial, because this reduces the risk of insufficient data availability. Additionally the effort for data acquisition and pre-processing is minimized. However, if only rough data are required, the outcomes of a model may not be sufficient for further decisions. Therefore, this criterion corresponds to the essential criteria 2 and 3 (scale of the catchment, temporal resolution); when some data are missing recommendations about those related issues are not possible (e.g. no management practices applicable when a land use map is missing).

#### The Ic nitrate issue:

For a small catchment as the lc watershed accurate data are necessary in order to obtain results with a sufficient resolution: meteorological (precipitation, temperature etc.) and hydrological (discharge and nutrients) data in daily time steps; day and amount of fertiliser use and the land use schedule (remaining fertiliser in the soil, amount of uptake by the roots). Additionally, a large amount of data is available, so medium to high data requirements are acceptable, even though generally low data are positive (see above).

#### The Aquisafe trace contaminant issue:

Within the Aquisafe project modelling shall be applied to different catchments, where the data availability is not known. Therefore, little data requirements are generally positive, because this also reduces the effort for data acquisition and pre-processing.

#### Ranking:

"+" means that the data requirement is low (e.g. few, available data are necessary)

"-" means that the data requirement is high (e.g. further measurements necessary)

"±" means that the data requirement is medium (e.g. complex data, but publicly available)

#### 2) Presence of a Graphical User Interface (GUI)

When performing modelling, several possibilities exist in term of interfaces. The most basic solution offers no proper graphical interface. Then data needs to be properly processed, transferred to the right files and an executable program will then run the modelling process. Yet, there are existing models which offer a Graphical User Interface (GUI), which means that the user is supported when performing the modelling part.

The Ic nitrate/ Aquisafe trace contaminant issue:

As several different people might use the model, it is preferable to use a model with a GUI so that a maximum number of people can fully exploit its possibilities.

Ranking:

- "+" means that a GUI is existent
- "-" means that a GUI is not existent

#### 3) Accuracy vs. uncertainty of the model

Using a model implies working with simplified descriptions of real phenomena. As a result, the input as well as the output of models are never certain and must be taken with precaution. Indeed, a part of uncertainty is associated with each model, in relationship with the complexity of the model itself. Other parts are linked to the overall presence of heterogeneity of meteorological and geographical data. Thus, it is important to know how big the uncertainty is, but it is hard to define before using a model. This parameter will always have to be recalled when showing results.

#### The Ic nitrate/ Aquisafe trace contaminant issue:

The selected model, however, should provide the possibility of calculating the uncertainty. It should further support the modelling procedure with tools for calibration, sensitivity analysis and uncertainty analysis.

Ranking:

"+" means that there is a tool for uncertainty analysis

"-" means that there is no tool for uncertainty analysis

"0" means that there is no information available

#### 4) Effort for data acquisition, pre- and post processing and modelling

Normally, data need to be pre-processed before being used for modelling. This operation is time-consuming and consequently expensive. The effort for modelling is strongly linked to the complexity of the model itself because each considered component (nitrogen, phosphorus or trace contaminants etc.) increases the amount of required data (input data as well as calibration data). However, this criterion is difficult to assess by a literature study because usually no information can be gained from scientific publications. The achievement of this criterion can only be given by a rough estimation.

The Ic nitrate/Aquisafe contaminants issue:

For the lc-watershed, first results had to be delivered in February 2008 and thus, the time limit to perform modelling was short. Therefore the effort for data acquisition, pre- and post processing and modelling should be as low as possible.

#### The Aquisafe trace contaminant issue:

For other catchments the time limit is not so short. Nevertheless, little effort for modelling is always preferable.

#### Ranking:

"+" means that low effort for data acquisition and pre-processing is expected compared with other models (e.g. data publicly available)

"-" high effort for data acquisition and pre-processing (e.g. usually additional sampling necessary)

"±" means that the expected effort is medium

#### 5) Ownership of the model for further development

Some models are not open for further developments (closed source models), others are open source. Closed source models (e.g. commercial models) do not allow changing the internal code, modifying the model or adding applications. For our purpose it would be positive to have an open source model.

The Ic nitrate/ Aquisafe trace contaminant issue:

An open source model is an advantage as first investigations have shown that enhancements regarding special pesticides or management practices (like wetlands or riparian zones) will be necessary. Thus, in both cases, an open source model and a possibility for further development would be a positive point.

Ranking:

"+" means that the model is open source and the source code can be changed

"-" means that there is a limitation in changing the source code

"±" means that the model is open source for research purpose only

#### 6) Popularity/support/documentation of the model

For publicly available models, that have been used for many years the degree of popularity of a model can be seen as an indication of its scientific quality and reliability. In addition to that, scientific exchange with many different working groups is possible. However, it has to be considered that not only the score of references is important but also the number of applications and whether the model was used by different working groups.

Furthermore profound documentation is necessary for the implementation of a new model. This point is important for independent work and to understand the model results. Additionally, support by the developers of a model can be useful in case of problems and questions beyond the information given in the manual.

The Ic nitrate/Aquisafe trace contaminant issue:

For both cases, it is important to choose a well-known model so that potential future users of the model do not rely on only a few scientists but can obtain information from various sources.

Ranking:

"+" means that the model is popular (high number of successful applications, given support, documentation exists)

"-" means that the model has not been used frequently, low quantity of references was found and no documentation is available

"±" means medium number of references, documentation not easy available (only on demand)

#### **3.3.2 Application of the criteria**

3.3.2.1 The nitrate issue

After applying the criteria for pre-selection six models remain for further evaluation: HBV-NP, HSPF, SWIM, SWAT, WasMod and Mike-She. In a final step all these remaining models were evaluated by a multi-criteria analysis (

#### Table 4).

Concerning data requirements most models have medium requirements, as they all simulate the entire hydrological cycle (essential criterion 1a) and the nitrogen cycle (essential criterion 1b). HBV-NP describes some of the processes more empirically than other models therefore data requirements are low. Mike She, on the other hand is physically based and thus requires much more data than the other models – which are often not available (Quilbé et al., 2006).

The presence of a GUI facilitates the modelling including the pre- and partly the postprocessing. Such a GUI exists only for the SWAT, SWIM and the Mike She models. For the HBV-NP model there is a web-interface under development but not yet available. The commercial version of the WasMod model has a GUI but the source code is not open for development. Vice versa, the open source version has no GUI included.

The criterion effort for data acquisition, pre-processing and modelling is directly linked to the criterion data requirements: The Mike-She model needs data that are normally not available (e.g. detailed maps of land use, soil, river bed geometry at different segments, high resolution data of pre¬cipitation, tempera¬ture, wind speed etc.) and thus the user has to carry out additional investigations. All other models can be used with publicly available data and the HBV-NP model requires lower effort in pre-processing due to the lower number of incorporated modules.

Except for the Mike She model all of the models are open source. The Mike She model needs the Mike11 model for simulating the river routing through the catchment. Both models are relatively expensive (up to  $11,000 \in$  for Mike She and up to  $10,000 \in$  for Mike11). The HBV-NP model is available free of charge for research purpose but not for commercial use. In latter case it is not known whether the source code is available.

Table 4: Ranking of the 6 most suitable models for the lc nitrate issue according to theadditional criteria (details on the ranking within the criteria is given in chapter 3.3.1).

|                                                                                                                         | HBV-NP                                                                                              | HSPF                                                                             | SWIM                                                                                               | SWAT                               | WasMod                                                                                                        | Mike-She                                                                   |
|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Data<br>requirements<br>+ low data requirement<br>- high data<br>requirement<br>± medium data<br>requirement            | +                                                                                                   | ±                                                                                | ±                                                                                                  | ±                                  | ±                                                                                                             | -                                                                          |
| Graphical User<br>Interface (GUI)<br>+ GUI exists<br>- GUI not exists                                                   | +                                                                                                   | -                                                                                | +                                                                                                  | +                                  | -                                                                                                             | +                                                                          |
| Effort for model-<br>ling<br>+ low effort<br>- high effort<br>± medium effort                                           | +                                                                                                   | ±                                                                                | ±                                                                                                  | ±                                  | ±                                                                                                             | -                                                                          |
| Ownership of the<br>model<br>+ open source model<br>- closed source model<br>± open source only for<br>research purpose | ±                                                                                                   | +                                                                                | +                                                                                                  | +                                  | +                                                                                                             | -                                                                          |
| Popularity of the<br>model<br>+ very popular<br>- minor use<br>± medium use                                             | 6 references<br>for HBV-NP,<br>one user group<br>in Sweden<br>(SMHI),<br>insufficient<br>manual, no | +<br>146<br>references,<br>different user<br>groups, user<br>manual<br>available | 19 references,<br>one user group<br>in Germany<br>(PIK),<br>comprehensive<br>manual, no<br>support | wide range of application,         | t<br>12 references,<br>little user<br>group (about 3<br>groups only in<br>Germany),<br>only a<br>insufficient | 10 references,<br>using all over<br>in Europe, user<br>manual<br>available |
| Tools for<br>estimating the<br>uncertainty<br>+ existing tool<br>- no existing tool<br>0 no information                 | <b>O</b>                                                                                            | 0                                                                                | +                                                                                                  | manual,<br>support can be<br>given | manual                                                                                                        | +                                                                          |

The most popular model is SWAT, due to its more than 600 publications with a wide range of applications and user groups around the world. Moreover there is comprehensive manual available and an annual conference to contact experts. The Mike-She model has a wide range of applications especially in Europe: it has been used in 20 European countries. The HBV-NP model is based on the well-known hydrological model HBV and has only just recently been established. Thus the references as well as the range of application are few. All papers found deal with one catchment in Sweden. The SWIM-model is a spin-off of the SWAT model and is only used by one research group in Germany. The model is used for

simulations in the context of the EU Water Framework Directive and a user manual is available. For WasMod only an insufficient manual is available. There is a small user group in Germany (University of Jena, University of Kiel) with about 10 successful applications in Germany.

For the last criterion "tools for estimating the uncertainty" it was difficult to obtain reliable information. There are applications found in the literature for the models SWIM, SWAT and Mike-She with special regard to this issue. For the HBV-NP model and the HSPF no information was found and the WasMod model has no tool available. Nevertheless, in terms of uncertainty it is important to keep in mind, that the uncertainty resulting from uncertaint data usually exceeds the uncertainty resulting from the modelling procedure itself.

**Summary:** Without weighing the different criteria, the SWIM and the SWAT model seem to fit best to the requirements of the Ic-nitrate issue. The only difference is the popularity of the model, which is much higher for the SWAT model. As this is an important factor, due to limited own experience at KWB and due to the need for scientific exchange in the context of Aquisafe, we recommend to simulate the Ic-nitrate issue with the model SWAT.

#### 3.3.2.2 The trace contaminant issue

Beside the nitrate issue for the Ic watershed trace contaminants are in the main focus of the Aquisafe project. After applying the essential criteria (chapter 3.2.2) four models remain for further investigation: DRIPS, HSPF, SWAT and Mike She. An overview of the ranking according to the additional criteria is given in Table 5. In the previous chapter 3.3.2.1 only the DRIPS model was not discussed so only the DRIPS model will be detailed in the following.

## Table 5: Ranking of the 4 most suitable models for the trace contaminant issue according to the additional criteria.

|                                                                                                        | DRIPS                                                         | HSPF                                                                    | SWAT                                                                                                           | Mike She                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data requirements<br>+ low data requirement<br>- high data requirement<br>± medium data<br>requirement | ±                                                             | ±                                                                       | ±                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Graphical User<br>Interface (GUI)<br>+ GUI exists<br>- GUI not exists<br>0 no information              | +                                                             | -                                                                       | +                                                                                                              | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Effort for model-<br>ling<br>+ low effort<br>- high effort<br>± medium effort                          | ±                                                             | ±                                                                       | ±                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ownership of the<br>model<br>+ open source model<br>- closed source model                              | +                                                             | +                                                                       | +                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Popularity of the<br>model<br>+ very popular<br>- minor use<br>± medium use                            | G references, one user<br>group in Germany, no<br>user manual | ➡<br>146 references,<br>different user groups,<br>user manual available | ♣ 685 references, wide range of application, different user groups, comprehensive manual, support can be given | the second state of the second state |
| Tools regarding<br>uncertainty<br>+ existing tool<br>- no existing tool<br>0 no information            | +                                                             | 0                                                                       | +                                                                                                              | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

The DRIPS model requires medium data comparable to HSPF and SWAT. It has a graphical user interface included which allows a user-friendly pre-processing of data (medium effort for modelling). The source code of the model is available (open source). However, it needs a

noteworthy time to becoming familiar (like in all other cases). The popularity is lower than all other models because of their minor use and the limited user group (only Germany). Numerous management practices are available and a tool for assessing uncertainty is included in DRIPS.

**Summary:** After applying the additional criteria to the pre-selected models without weighing only the DRIPS and the SWAT model seem to be appropriate. They differ only in the criterion popularity, with SWAT the being the by far more popular model. We would therefore recommend testing the SWAT model in the further course of the Aquisafe project.

## Chapter 4 Summary and Conclusions

The Aquisafe project aims at identifying key processes and developing practical methods for mitigation of emerging contaminants in rural and semi-rural environments for the protection of surface water resources. Modelling can assist in finding major sources and key processes as well as in simulating the effectiveness of different mitigation measures. It was therefore the aim of work package 2 within the Aquisafe project to identify available tools for modelling and – if available – to apply these to a case study.

For this purpose the lc case study was identified together with Veolia Eau. The lc catchment is dominated by agriculture and thus high concentrations of nitrate and trace contaminants occur. Due to a possible closure of the water intake from the river lc the nitrate issue is of high priority for Veolia Eau and will therefore be considered first in the course of model application. Therefore modelling shall mainly support the water supplier in decisions on the most effective actions for reducing the nitrate concentration in the surface water. An additional task could later on be the application of the model in order to assess the effectiveness of mitigation measures against trace pollution contamination.

In a three step approach six and four models were found to fulfil the basic requirements for the Ic nitrate issue and the Aquisafe trace contaminant issue, respectively. Each of these models has advantages and drawbacks. The HBV-NP model includes nutrients for the Ic nitrate issue as well as wetlands but fails in contaminants. Furthermore it was developed only recently and is thus not frequently applied. The HSPF model includes both nutrients and contaminants. It is widely used which is shown by the heterogeneous user community. The main drawback of the model is the missing graphical user interface. The SWIM and SWAT models are very well documented, include nutrients and are open source models. The SWIM model includes wetlands while the SWAT model considers pesticides and offers numerous management options. Both models come with a graphical user interface which leads the user through the complete data pre-processing. However, the developer of the SWIM model recommends the SWAT model for external users due to the better support. The WasMod model covers nutrient components like nitrogen, phosphorus and carbon but has no contaminants module included. A graphical user interface is not available and the user community is only situated in Germany. All these models need medium or low data compared to the **Mike She** model. This model includes nutrients as well as contaminants, is physically based, and thus, requires much more data some of which are not publicly available. Further it is expensive compared to the other models. The **DRIPS** model focuses only on contaminants, not nutrients, but all other criteria were achieved, similar to the SWAT model. However, a noteworthy drawback of the model is the minor international use.

We have to note that the ranking for this report should not be interpreted as a universal intercomparison study of models. One model is not better than another but only more suitable with respect to our specific needs. An application of these multi-criteria analysis regarding other issues would be probably lead to a different ranking (Quilbé et al., 2006).

#### Bibliography

- Andersson, L., Rosberg, J., Pers, B.C., Olsson, J. and Arheimer B., 2005. Estimating Catchment Nutrient Flow with the HBV-NP Model: Sensitivity to Input Data. *Ambio* 34(7): 521-532.
- Arheimer, B. and Brandt, M., 1998. Modelling nitrogen transport and retention in the catchments of southern Sweden. *Ambio* 27(6): 471-480.
- Arheimer, B. and Wittgren, H.B., 2002. Modelling Nitrogen Retention in Potential Wetlands at the Catchment Scale. *Ecological Engineering* 19(1): 63-80.
- Arheimer, B., Löwgren, M., Pers, B.C. and Rosberg, J., 2005. Integrated Catchment Modelling for Nutrient Reduction: Scenarios Showing Impacts, Potential and Cost of Measures. *Ambio* 34(7): 513-520.
- Arheimer, B. and Olsson, J., 2005. Integration and Coupling of Hydrological Models with Water Quality Models: Applications in Europe. *Report. Swedish Metrological Institute*: pp. 53.
- Bach, M., Huber, A. and Frede, H.G., 2001. Input pathways and river load of pesticides in Germany a national scale modelling assessment. *Water Sci. & Technol.*43(5): 261-268.
- Behrendt, H. and Bachor, A., 1998. Point and diffuse load of nutrients to the Baltic Sea by river basins of North East Germany (Mecklenburg-Vorpommern). *Water Science and Technology* 38(10): 147-155.
- Beaujouan, V., Durand, P. and Ruiz, L., 2001. Modelling the effect of the spatial distribution of agricultural practices on nitrogen fluxes in rural catchments. *Ecological Modelling* 137: 93-105.
- Bhat, S., Hatfield, K., Jacobs, J.M., Lowrance, R., Williams, R., 2007. Surface runoff contribution of nitrogen during storm events in a forested watershed. *Biogeochemistry* 85 (3): 253-262.
- Boesten, J.J.T.I., 2004. Influence of dispersion length on leaching calculated with PEARL, PELMO and PRZM for FOCUS groundwater scenarios. *Pest Management Science* (60): 971-980.
- Chen, H. and Beschta, R., 1999. Dynamic Hydrologic Simulation of the Bear Brook Watershed in Maine (BBWM). *Environmental Monitoring and Assessment* 55: 53-96.

- Cole, T.M., 2000. Reservoir thermal modeling using CE-QUAL-W2. *Environmental Studies* 4: 237-246.
- Discover France. (2007). "Geography of France." Retrieved 6 November 2007, from http://www.bonjourlafrance.com/france-map/images/map-france-departments-6-460k-1100x1220.jpg.
- Dr. Fred F. Hattermann (2007). Berlin / Potsdam.
- Endreny, T.A., Somerlot, C., andHassett, J.M., 2003. Hydrograph sensitivity to estimates of map impervious cover: A WinHSPF BASINS case study. *Hydrological Processes* 17 (5): 1019-1034.
- Flipo N, Even S, Poulin M, Théry S, Ledoux E (2007): Modeling nitrate fluxes at the catchment scale using the integrated tool CAWAQS. Sci Total Environ. 375(1-3): 69-79.
- Goel'eaux, S., 2007. Bassin versant de l'Ic, presentation du bassin versant. *Pordic, Syndicat Mixte de la Cote du Goelo*: p. 25.
- Haberlandt, U., Klöcking, B., Krysanova, V. and Becker, A., 2001. Regionalisation of the base flow index from dynamically simulated flow components a case study in the Elbe River Basin. *Journal of Hydrology* 248: 35-53.
- Hattermann, F.F., Krysanova, V., Habeck, A. and Bronstert, A., 2006. Integrating wetlands and riparian zones in river basin modelling. *Ecological Modelling* 199: 379-392.
- Hattermann, F.F., Wattenbach, M., Krysanova, V. and Wechsung, F., 2005. Runoff simulations on the macroscale with the ecohydrological model SWIM in the Elbe catchment validation and uncertainty analysis. *Hydrological Processes* 19: 693-714.
- Hernandez, M., Miller, S.N., Goodrich, D.C., Goff, B.F., Kepner, W.G., Edmonds, C.M. and Jones, K.B., 2000. Modelling Runoff Response to Land Cover and Rainfall Spatial Variability in Semi-arid Watersheds. *Journal of Environmental Monitoring and Assessment* 64: 285-298.
- Hervouet, J.-M., 2000. A high resolution 2-D dam-break model using paralellization. *Hydrological Processes* 14(13): 2211-2230.
- Huber, A., Bach, M. and Frede, H.G., 2000. Pollution of surface waters with pesticides in Germany: modelling non-point source inputs. *Agriculture Ecosystems & Environment* 80: 191-204.
- James, R.T., Martin, J., Wool, T. and Wang, P.F., 1997. A sediment resuspension and water quality model of Lake Okeechobee. *Journal of the American Water Resources Association* 33(3): 661–678.
- Jasper, K., Calanca, P., Gyalistras, D. and Fuhrer, J., 2004. Differential impacts of climate change on the hydrology of two alpine river basins. *Clim. Res.* 26(2): 113-129.

- Jewitt, G.P.W. and Schulze, R.E., 1999. Verification of the ACRU model for forest hydrology applications. *Water SA* 25(4): 483-490.
- John E. Parsons, 2004. "OPUS: model description and evaluation." Southern Cooperative Series Bulletin Retrieved 20. November 2007, from http://www3.bae.ncsu.edu/Regional-Bulletins/Modeling-Bulletin/Opus\_sbull.html

http://www3.bae.ncsu.edu/Regional-Bulletins/Modeling-Bulletin/modeling-bulletin.html.

- Jun, K.S., Kang, J.W. and Lee, K.S., 2007. Simultaneous estimation of model parameters and diffuse pollution sources for river water quality modeling. *Wat Sci & Technol*. 56(1): 155-162.
- Kassel University, 2006. "Register of Ecological Models (REM)." Retrieved 20 November 2007, from http://www.wiz.uni-kassel.de/eco\_model/server.html.
- Kleinn, J., Frei, C., Gurtz, J., Lüthi, D., Vidale, P.L. and Schär, C., 2005. Hydrologic simulations in the Rhine basin driven by a regional climate model. *J. Geophys. Res.* 110(4): 1-18.
- Klöcking, B. and Haberlandt, U., 2002. Impact of land use changes on water dynamics a case study in temperate meso and macro scale river basins. *Physics and Chemistry of the Earth* 27(9-10): 619-629.
- Lee, J.H.W., Wang, Z.Y., Thoe, W. andCheng, D.S., 2007. Integrated physical and ecological management of the East River. *Water Science and Technology* 7(2): 81-91.
- Lunn, R.J., Adams, R., Mackay, R. and Dunn, S.M., 1996. Development and application of a nitrogen modelling system for large catchments. *Journal of Hydrology* 174: 285-304.
- Ma, Q.L., Smith, A.E., Hook, J.E., Smith, R.E. and Bridges, D.C., 1999. Water runoff and pesticides transport from a gulf course fairway: Observations vs. Opus model simulations. *Journal of Environmental Quality* 28(5): 1463-1473.
- Normant, C.L., 2000. Three-dimensional modelling of cohesive sediment transport in the Loire estuary. *Hydrological Processes* 14(13): 2231-2243.
- Payraudeau, S.,2002. Modelisation distribuée des flux d'azote sur des petits bassins versants méditerranéens. Water sciences. Montpellier, France, *ENGREF*: p. 435.
- Pettersson, A., Arheimer, B. and Johansson, B., 2001. Nitrogen concentrations simulated with HBV-N: new response function and calibration strategy. *Nordic Hydrology* 32(3): 227-248
- Post, J., Krysanova, V., Suckow, F., Mirschel, W., Rogasik, J. and Merbach, I., 2007. Integrated eco-hydrological modelling of soil organic matter dynamics for the assessment of environmental change impacts in meso- to macro-scale river basins. *Ecol. Mod.* 206(1-2): 93-109.

- Quilbé, R., Rousseau, A.N., Lafrance, P., Leclerc, J. and Amrani, M., 2006. Selecting a Pesticide Model at the Watershed Scale Using a Multi-criteria Analysis. *Water Qual. Res. J. Canada* 41(3): 283-295.
- Quilbé, R. and Rousseau, A.N., 2007. GIBSI: an integrated modelling system for watershed management - sample applications and current developments. *Hydrol. Earth Syst. Sci.* 11: 1785-1795.
- Röpke, B., Bach, M. and Frede, H.G., 2004. DRIPS a DSS for estimating the input quantity of pesticides for German river basins. *Environmental Modelling & Software* 19: 1021-1028.
- Saleh, A.and Du, B., 2004. Evaluation of SWAT and HSPF within BASINS Program for the Upper North Bosque River Watershed in Central Texas. *Transactions of the ASAE* 47(4): 1039-1049.

Santhi, C., Srinivasan, R.Arnold, J.G. and Williams, J.R., 2005. A modeling approach to evaluate the impacts of water quality management plans implemented ina watershed in Texas. *Environmental Modelling & Software* 21 (2006): 1141-1157.

- Schuol, J. and Abbaspour, K.C., 2006. Calibration and uncertainty issues of a hydrological model (SWAT) applied to West Africa. *Advances in Geoscience* 9:137-143.
- Neitsch, S.L., Arnold, J.G.Kiniry, J.R. and Williams, J.R., 2005. Soil and Water Assessment Tool Theoretical Documentation. Temple, Texas, USA, Grassland, Soil and Water Research Laboratory. *Agricultural Research Service*: p. 494.

SCOPUS (2007). Elsevier.

- Smith, R., and Ferreira, V., 1992. Opus: an integrated simulation model for transport of nonpointsource pollutants at the field scale. USDA-ARS publication ARS-98, Ft.Collins, Colorado
- Smith, R.E., Goodrich, D.C. and Quinton, J.N., 1995. Dynamic, distributed simulation of watershed erosion: The KINEROS2 and EUROSEM models. *Journal of Soil and Water Conservation* 50(5): 517-520.
- Smithers, J.C., Schulze, R.E., Pike, A. and Jewitt, G.P.W., 2001. A hydrological perspective of the February 2000 floods: A case study in the Sabie River Catchment. *Water SA* 27(3): 325-332.
- Sonneveld, M.P.W. and Bouma, J., 2003. Effects of combinations of land use history and nitrogen application on nitrate concentration in the groundwater. *NJAS* 51(1/2): 135-146.
- Southeast Watershed Research Laboratory, 1999. Riparian Ecosystem Management Model (REMM). *User's Guide. ARS USDA, ARS USDA:* p. 42.

- Swedish Meteorological and Hydrological Institute 2006. "The HBV model." Retrieved 20 November 2007, from http://www.smhi.se/sgn0106/if/hydrologi/hbv.htm.
- USEPA, 2001. PLOAD version 3.0: An ArcView GIS Tool to Calculate Nonpoint Sources of Pollution in Watershed and Stormwater Projects. USEPA, *USEPA*: p. 48.
- USEPA, 2007 . "BASINS basic information." Retrieved 20 November 2007, , from http://www.epa.gov/waterscience/basins/basinsv3.htm.
- Wade, A.J., Durand, P., Beaujouan, V., Wessel, W.W., Raat, K.J., Whitehead, P.G., Butterfield, D., Rankinen, K. and Lepisto, A., 2002. A nitrogen model for European catchments: INCA, new model structure and equations. *Hydrology and Earth System Sciences* 6(3): 559–582.
- Wells, S.A., 2000. Hydrodynamic and water quality river basin modeling using CE-QUAL-W2 version 3. *Environmental Studies* 4: 195-204.
- Widen-Nilsson, E., Halldin, S. and Xu, C.-y., 2007. Global water-balance modelling with WASMOD-M: Parameter estimation and regionalisation. *Journal of Hydrology* 340 (1-2): 105-118.
- Wolf, J., Beusen, A.H.W., Groenendijk, P., Kroon, T., Rötter, R. and Zeijts, H., 2003. The integrated modelling system STONE for calculating nutrient emissions from agriculture in the Netherlands. *Environmental Modelling and Software* 18: 597-617.

#### Appendix A Comparison of the 44 hydrological models

Table 6: Basic information on 44 hydrological models

|                |                  | Modelling           | Components       | ponents                             | Manage-           |                   |              | Main<br>references,           |                                      |                  |
|----------------|------------------|---------------------|------------------|-------------------------------------|-------------------|-------------------|--------------|-------------------------------|--------------------------------------|------------------|
| Model          | Objectives       | Approach            | Limita-<br>tions | Scale Nutri- Conta-<br>ents minants | Conta-<br>minants | ment<br>Practices | Requirements | Pre-selection<br>yes/no (why) | number of<br>references in<br>SCOPUS |                  |
| ACRU           | modelling floods | agro-hydrological   |                  | small to                            | no                | no                | no           | maps of land                  | no                                   | Jewitt &         |
|                | in South Africa; | model               |                  | large                               |                   |                   |              | cover, soil,                  | (no nutrients)                       | Schulze, 1999,   |
| University of  | impact of af-    | considering         |                  | catch-                              |                   |                   |              | topography and                |                                      | Smithers et al., |
| Natal, South   | forestation in   | stream flow,        |                  | ments;                              |                   |                   |              | rainfall data                 |                                      | 2001             |
| Africa, public | stream flow      | evaporation and     |                  | daily time                          |                   |                   |              |                               |                                      |                  |
| domain         | reduction, South | land use            |                  | step                                |                   |                   |              |                               |                                      | ACRU: 26         |
|                | Africa           | management          |                  |                                     |                   |                   |              |                               |                                      |                  |
|                |                  | options             |                  |                                     |                   |                   |              |                               |                                      |                  |
| ANIMO          | effects of land  | modelling the       | Catch-           | field                               | C-, P-,           | no                | no           | soil physical                 | no                                   | Sonneveld &      |
|                | use changes and  | leaching of         | ment is          | scale                               | N-                |                   |              | properties, soil,             | (only field scale)                   | Bouma, 2003      |
| DLO Winand     | nitrogen         | nitrogen into the   | not in-          |                                     | cycle             |                   |              | chemical                      |                                      |                  |
| Staring Centre | application on   | river, water fluxes | cluded           |                                     |                   |                   |              | properties,                   |                                      | Animo: 11        |
| (SC-DLO),      | nitrate          | within the soil     |                  |                                     |                   |                   |              | using of                      |                                      |                  |
| Wageningen,    | concentration in |                     |                  |                                     |                   |                   |              | fertilizer,                   |                                      |                  |
| Netherlands    | the groundwater  |                     |                  |                                     |                   |                   |              | boundary and                  |                                      |                  |
|                |                  |                     |                  |                                     |                   |                   |              | initial conditions            |                                      |                  |

|                   |                  | Modelling           | Limita- |            | Comp           | oonents           | Manage-           |                   | Pre-selection   | Main<br>references,                  |
|-------------------|------------------|---------------------|---------|------------|----------------|-------------------|-------------------|-------------------|-----------------|--------------------------------------|
| Model             | Objectives       | Approach            | tions   | Scale      | Nutri-<br>ents | Conta-<br>minants | ment<br>Practices | Requirements      | yes/no (why)    | number of<br>references in<br>SCOPUS |
| AGNPS             | modelling        |                     | single  | small      | yes            | no                | ?                 | ?                 | no (only single | Register of                          |
|                   | nutrients and    |                     | event   | scale      |                |                   |                   |                   | events)         | Ecological                           |
| United Stated     | pesticides fate  |                     | model   | catch-     |                |                   |                   |                   |                 | Models                               |
| Department of     |                  |                     |         | ment       |                |                   |                   |                   |                 |                                      |
| Agriculture       |                  |                     |         |            |                |                   |                   |                   |                 |                                      |
| (USDA)            |                  |                     |         |            |                |                   |                   |                   |                 |                                      |
| ArcEgmo           | modelling        | hydrological        |         | meso to    | no             | no                | no                | maps of land      | no              | Klöcking &                           |
|                   | impacts on river | model               |         | large      |                |                   |                   | cover,            | (no nutrients)  | Haberlandt,                          |
| Potsdam Institute | basin            |                     |         | catch-     |                |                   |                   | topography, soil, |                 | 2002,                                |
| of climate impact | management;      |                     |         | ments;     |                |                   |                   | rainfall data,    |                 | Haberlandt et                        |
| research (PIK),   | impact of land   |                     |         | daily time |                |                   |                   | temperature,      |                 | al., 2001                            |
| costs depending   | use changes on   |                     |         | step       |                |                   |                   | discharge at the  |                 |                                      |
| on selected       | water dynamics   |                     |         |            |                |                   |                   | (sub)basins       |                 | ArcEgmo: 6                           |
| modules           |                  |                     |         |            |                |                   |                   | outlet            |                 |                                      |
| Aquavallee        | Risk assessment  | empirical,          | no hy-  | catch-     | no             | yes               | yes               | topography,       | no              | www.agriperon.f                      |
| (Aquaplaine)      | for pesticide    | spatially           | drolo-  | ment       |                |                   |                   | land use, soil    | (no hydrologic  | r/aquavallee_en                      |
|                   | mobilization     | distributed, multi- | gic     | scale      |                |                   |                   | type, rainfall    | model)          | .html                                |
|                   |                  | criteria analysis   | mode-   | (field     |                |                   |                   | data, pesticide   |                 |                                      |
|                   |                  | for hot-spot        | ling    | scale)     |                |                   |                   | application       |                 |                                      |
|                   |                  | identification      |         |            |                |                   |                   |                   |                 |                                      |

| CAWAQS           | assessment of     | partly conceptual  |          | Daily     | Ν                | no | no | precipitation,    | no               | Flipo et al.,  |
|------------------|-------------------|--------------------|----------|-----------|------------------|----|----|-------------------|------------------|----------------|
|                  | nitrate losses at | and partly         |          | time step |                  |    |    | potential         | (management      | 2007           |
|                  | catchment scale   | physically based;  |          |           |                  |    |    | Evapotranspirati  | practices not    |                |
|                  |                   | fully distributed; |          |           |                  |    |    | on                | included)        |                |
|                  |                   | coupling of a      |          |           |                  |    |    | For water         |                  |                |
|                  |                   | fluvial            |          |           |                  |    |    | production units: |                  |                |
|                  |                   | hydrodynamic       |          |           |                  |    |    | land use, soil    |                  |                |
|                  |                   | and                |          |           |                  |    |    | texture           |                  |                |
|                  |                   | biogeochemical     |          |           |                  |    |    | Possibly more.    |                  |                |
|                  |                   | model with a       |          |           |                  |    |    |                   |                  |                |
|                  |                   | quasi 3D           |          |           |                  |    |    |                   |                  |                |
|                  |                   | hydrogeological    |          |           |                  |    |    |                   |                  |                |
|                  |                   | model;             |          |           |                  |    |    |                   |                  |                |
|                  |                   | Division into sub  |          |           |                  |    |    |                   |                  |                |
|                  |                   | basins;            |          |           |                  |    |    |                   |                  |                |
|                  |                   | Water production   |          |           |                  |    |    |                   |                  |                |
|                  |                   | units              |          |           |                  |    |    |                   |                  |                |
| CE-Qual-W2       | modelling the     | 2-D lake and       | only for | small and | N, P,            | no | no | 2 dimensional     | no               | Wells, 2000,   |
|                  | water quality and | reservoir model    | lakes    | large     | O <sub>2</sub> , |    |    | data sets         | (only for lakes) | Cole, 2000     |
| US Army corps of | algae in lakes    |                    |          | lakes     | bac-             |    |    | necessary         |                  |                |
| engineers, USA,  | and reservoirs    |                    |          |           | teria,           |    |    | (calibration),    |                  | Ce-Qual-W2: 42 |
| public domain    |                   |                    |          |           | Algae            |    |    | weather data,     |                  |                |
|                  |                   |                    |          |           |                  |    |    | nutrient input,   |                  |                |
|                  |                   |                    |          |           |                  |    |    | hydrology         |                  |                |

| Claws/Owls                                                     | Hydrological<br>simulation of the<br>Bear Brook<br>watershed                                                 | Modelling<br>hydrological and<br>geomorphological<br>processes with<br>forest dynamics                                                                        | ?                                                                   | no  | no  | no  | ?                                                                                                                                                         | no<br>(no nutrients)                                                                                    | Chen &<br>Beschta, 1999<br>Claws: 1                                            |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----|-----|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| CREAMS<br>United States<br>Department of<br>Agriculture (1980) | Prediction of<br>runoff, erosion,<br>and chemical<br>transport from<br>agricultural<br>management<br>systems | Physically based;<br>hydrologic<br>component: with<br>daily rainfall data:<br>SCS curve<br>number model;<br>with hourly data:<br>infiltration based<br>models | Field<br>scale;<br>Individual<br>storms to<br>long term<br>averages | yes | yes | yes |                                                                                                                                                           | no<br>(basic equations<br>are integrated<br>into recent model<br>developments<br>e.g. SWAT and<br>SWIM) | REM                                                                            |
| DRIPS<br>University of<br>Gießen, public<br>domain             | modelling non-<br>point sources of<br>pesticides in<br>Germany                                               | drainage runoff<br>input of<br>pesticides in<br>surface water                                                                                                 | small to<br>large<br>catch-<br>ments;<br>monthly<br>time step       | no  | yes | yes | maps of soil,<br>land cover,<br>topography,<br>rainfall data<br>(incl. frequency<br>of storm water<br>events), details<br>on application of<br>pesticides | yes<br>-<br>for Aquisafe<br>contaminants<br>issue                                                       | Huber et al.,<br>2000; Bach et<br>al., 2001; Röpke<br>et al., 2004<br>DRIPS: 6 |

| <b>EPIC</b><br>USDA                                                                           | modelling soil<br>erosion, nutrient<br>cycling and<br>pesticide fate                                                                                                                                                                |               |                                          | field<br>scale                                   | yes | yes | ?   | ?             | no (only field<br>scale) | EPIC: 117                                                                                               |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------|--------------------------------------------------|-----|-----|-----|---------------|--------------------------|---------------------------------------------------------------------------------------------------------|
| FOOT—CRS<br>developed by EU<br>project<br>FOOTPRINT,<br>coordination<br>BRGM (2006 –<br>2009) | Identification of<br>pesticide<br>pathways in the<br>landscape;<br>Estimation of<br>pesticide levels in<br>surface and<br>groundwater;<br>Specific<br>recommendation<br>s to be made to<br>reduce<br>contamination by<br>pesticides | not completed | Availabl<br>e from<br>the end<br>of 2008 | Small<br>catchme<br>nts to<br>regional<br>levels | no  | yes | yes | not completed | no<br>(not completed)    | http://www.eu-<br>footprint.org/ata<br>glance.html<br>http://www.eu-<br>footprint.org/FO<br>OT_CRS.html |
| GLEAMS<br>USDA                                                                                | modelling<br>agriculture<br>pollutants                                                                                                                                                                                              |               |                                          | field<br>scale                                   | yes | yes | ?   | ?             | no (only field<br>scale) | Gleams: 37                                                                                              |

| GR               | Flood                              | Catchment as    | Daily,  |          | no  |    | no  | Precipitation; air | no              | http://www.cem    |
|------------------|------------------------------------|-----------------|---------|----------|-----|----|-----|--------------------|-----------------|-------------------|
|                  | estimation;                        | lumped unit;    | monthly |          |     |    |     | water demand       | (no             | agref.fr/webgr/In |
|                  | reservoir<br>design;               | empirical       | and     |          |     |    |     |                    | hydrochemistry) | dexGB.htm         |
|                  | management of                      |                 | yearly  |          |     |    |     |                    |                 |                   |
|                  | single- or multi-<br>purpose       |                 | time    |          |     |    |     |                    |                 | http://www.cem    |
|                  | reservoirs (for                    |                 | step    |          |     |    |     |                    |                 | agref.fr/webgr/H  |
|                  | flood<br>allaviation, low          |                 | 5100    |          |     |    |     |                    |                 | istoriquegb.htm   |
|                  | flow                               |                 |         |          |     |    |     |                    |                 | istonquego.ntm    |
|                  | augmentation,                      |                 |         |          |     |    |     |                    |                 |                   |
|                  | etc.);<br>flood                    |                 |         |          |     |    |     |                    |                 |                   |
|                  | forecasting,                       |                 |         |          |     |    |     |                    |                 |                   |
|                  | trend detection<br>in hydrological |                 |         |          |     |    |     |                    |                 |                   |
|                  | time series                        |                 |         |          |     |    |     |                    |                 |                   |
|                  |                                    |                 |         |          |     |    |     |                    |                 |                   |
| HBV-NP           | catchment                          | Hydrological    |         | small to | yes | no | yes | maps of land       | yes             | Arheimer et al.,  |
|                  | modelling for                      | model including |         | large    |     |    |     | cover,             | -               | 2005, Anders-     |
| Swedish          | nutrient                           | crops, nitrogen |         | catch-   |     |    |     | topography, soil,  | for lc-nitrate  | son et al., 2005, |
| Meteorological   | reduction,                         | and phosphorus  |         | ments    |     |    |     | river length,      | issue           | Arheimer &        |
| and Hydrological | establishing                       |                 |         |          |     |    |     | lakes depth,       |                 | Wittgren, 2002,   |
| Institute (SMHI) | measuring plans,                   |                 |         |          |     |    |     | weather data,      |                 | Arhei-mer &       |
|                  | flash flood                        |                 |         |          |     |    |     | (prec., sol. rad., |                 | Brandt, 1998,     |
|                  | forecast                           |                 |         |          |     |    |     | wind veloc.,       |                 | Pettersson et     |
|                  |                                    |                 |         |          |     |    |     | temp.), water      |                 | al., 2001         |
|                  |                                    |                 |         |          |     |    |     | qual./ discharge   |                 |                   |
|                  |                                    |                 |         |          |     |    |     | data (sub)         |                 | HBV: 83           |
|                  |                                    |                 |         |          |     |    |     | basins outlet      |                 | HBV-NP: 6         |

| HSPF            |               | modelling non-    | no tile | small to | yes     | yes | yes | maps of land     | yes                | Lee, 2007    |
|-----------------|---------------|-------------------|---------|----------|---------|-----|-----|------------------|--------------------|--------------|
|                 |               | point source      | drain-  | large    |         |     |     | use, topo-       | -                  |              |
| EPA, Purdue     |               | hydrology         | age     | catch-   |         |     |     | graphy, soils,   | for Ic-nitrate and | HSPF: 146    |
| University; USA |               |                   | flow    | ments    |         |     |     | hydrology,       | Aquisafe conta-    |              |
|                 |               |                   |         |          |         |     |     | weather data     | minant issue       |              |
|                 |               |                   |         |          |         |     |     | (precipitation,  |                    |              |
|                 |               |                   |         |          |         |     |     | solar radiation, |                    |              |
|                 |               |                   |         |          |         |     |     | wind velocity,   |                    |              |
|                 |               |                   |         |          |         |     |     | temperature),    |                    |              |
|                 |               |                   |         |          |         |     |     | water quality    |                    |              |
|                 |               |                   |         |          |         |     |     | data/ discharge  |                    |              |
|                 |               |                   |         |          |         |     |     | data at the      |                    |              |
|                 |               |                   |         |          |         |     |     | (sub)basins      |                    |              |
|                 |               |                   |         |          |         |     |     | outlet           |                    |              |
| INCA            | modelling the | integrated        |         | small to | Ν       | no  | no  | maps of land     | no                 | Wade et al., |
|                 | nitrogen      | nitrogen in       |         | large    | (point/ |     |     | cover,           | (no Management     | 2002         |
| University of   | dynamics in   | catchments        |         | catch-   | non-    |     |     | topography,      | practices          |              |
| Reading, UK,    | different     | model, export     |         | ments    | point   |     |     | soils, weather   | available)         | Inca: 45     |
| USARQ-Institut  | catchments    | nitrate from      |         |          | source  |     |     | data, discharge  |                    |              |
| national de la  |               | diffuse land use  |         |          | s)      |     |     | data at the      |                    |              |
| recherche       |               | types, nitrogen   |         |          |         |     |     | (sub)basins      |                    |              |
| agronomique,    |               | cycle within the  |         |          |         |     |     | outlet, nitrate- |                    |              |
| Rennes, France  |               | plant/soil system |         |          |         |     |     | and ammonium-    |                    |              |
|                 |               |                   |         |          |         |     |     | load             |                    |              |

| KINEROS           | simulation of     | event based    | no long  | small     | no      | no  | yes | maps of land      | no                 | Smith et al.,     |
|-------------------|-------------------|----------------|----------|-----------|---------|-----|-----|-------------------|--------------------|-------------------|
|                   | watershed         | hydrological   | term     | scale     |         |     |     | cover,            | (no nutrients)     | 1995              |
| USDA, public      | erosion           | model, erosion | periods  |           |         |     |     | topography,       |                    |                   |
| domain            |                   |                |          |           |         |     |     | soils, rainfall   |                    | Kineros: 181      |
|                   |                   |                |          |           |         |     |     | data (incl. storm |                    |                   |
|                   |                   |                |          |           |         |     |     | water events)     |                    |                   |
| MACRO             | modelling solute  |                |          | field     | yes     | ?   | ?   | ?                 | no (only field     | Macro: 52         |
| Swedish           | transport in      |                |          | scale     |         |     |     |                   | scale)             |                   |
| University of     | arable soils      |                |          |           |         |     |     |                   |                    |                   |
| Agriculture (SLU) |                   |                |          |           |         |     |     |                   |                    |                   |
| MAGIC             | acidification     |                | no       |           | yes     | no  | no  | ?                 | no (no nitrogen/   | Magic: 50         |
| University of     | control, nitrogen |                | nitrogen |           | (sulfat |     |     |                   | contaminants)      |                   |
| Virginia, USA     | transport         |                |          |           | e)      |     |     |                   |                    |                   |
| MHYDAS            | Model processes   |                | Single   | Small     | no      | yes | ?   |                   | no (time scale not | http://www.umr-   |
|                   | at local          |                | events;  | catchme   |         |     |     |                   | sufficient)        | lisah.fr/mhydas/i |
|                   | discontinuity     |                | only     | nts,      |         |     |     |                   |                    | ndex.php?page     |
|                   | scale or at       |                | hourly   | hourly    |         |     |     |                   |                    | <u>=oview⟨=e</u>  |
|                   | catchment         |                | time     | time step |         |     |     |                   |                    | <u>n</u>          |
|                   | integration scale |                | step     |           |         |     |     |                   |                    |                   |

| MIKE SHE          | eutrophication     | physically based   | small     | yes  | yes | yes | detailed maps of | yes                | Thompson et  |
|-------------------|--------------------|--------------------|-----------|------|-----|-----|------------------|--------------------|--------------|
|                   | control, pollutant | model, coupling    | water-    |      |     |     | land use, soil,  | -                  | al., 2004    |
| Danish            | and nitrogen       | with MIKE 11       | sheds     |      |     |     | river bed        | for lc-nitrate and | Mike She: 61 |
| Hydrological      | transport          | (hydrodynamic      |           |      |     |     | geometry at      | Aquisafe conta-    |              |
| Institute, DK     |                    | model for river    |           |      |     |     | different        | minant issue       |              |
|                   |                    | flow) for          |           |      |     |     | segments, high   |                    |              |
|                   |                    | catchments         |           |      |     |     | resolution input |                    |              |
|                   |                    | studies            |           |      |     |     | data (pre-       |                    |              |
|                   |                    |                    |           |      |     |     | cipitation,      |                    |              |
|                   |                    |                    |           |      |     |     | temperature,     |                    |              |
|                   |                    |                    |           |      |     |     | wind speed etc.) |                    |              |
| MONERIS           | modelling water    | modelling nutrient | large     | N, P | no  | yes | maps of soils,   | no                 | Behrendt &   |
|                   | and nutrients      | emissions in river | catch-    |      |     |     | topography,      | (only large        | Bachor, 1998 |
| Leibniz-Institute | balances, nutrient | systems            | ments,    |      |     |     | land use, tile   | catchments,        |              |
| of freshwater     | emissions into     | considering        | annual    |      |     |     | drainage,        | yearly time step)  | Moneris: 17  |
| Ecology and       | river basins in    | different diffuse  | time step |      |     |     | hydrology,       |                    |              |
| Inland Fisheries  | Germany            | pathways and       |           |      |     |     | weather data,    |                    |              |
| (IGB), Germany    |                    | point sources of   |           |      |     |     | water quality    |                    |              |
|                   |                    | nutrients          |           |      |     |     | data and         |                    |              |
|                   |                    |                    |           |      |     |     | discharge data   |                    |              |
|                   |                    |                    |           |      |     |     | at the           |                    |              |
|                   |                    |                    |           |      |     |     | (sub)basins      |                    |              |
|                   |                    |                    |           |      |     |     | outlet           |                    |              |

| OPUS             | studying different pollutions from | transport model<br>for material in soil | the<br>catch- | field<br>scale, | C, N,<br>P- | yes | yes | ? | no<br>(only field scale) | Smith &<br>Ferreira. 1992; |
|------------------|------------------------------------|-----------------------------------------|---------------|-----------------|-------------|-----|-----|---|--------------------------|----------------------------|
| USDA, University | agriculture                        | and water                               | ment is       | daily time      | cycle       |     |     |   |                          | Ma et al., 1999            |
| of Georgia, USA  |                                    |                                         | not inc-      | step            |             |     |     |   |                          |                            |
|                  |                                    |                                         | luded         |                 |             |     |     |   |                          | Opus: 10                   |
| PEARL/           | fate of pesticides                 | leaching of                             | no run-       | field           | no          | yes | yes | ? | no                       | Boesten, 2004              |
| GeoPEARL         | in soils                           | pesticides to                           | off           | scale           |             |     |     |   | (only field scale)       |                            |
|                  |                                    | groundwater and                         | conside       |                 |             |     |     |   |                          | Pearl: 16                  |
| Alterra Green    |                                    | drainage                                | red           |                 |             |     |     |   |                          |                            |
| World Research,  |                                    |                                         |               |                 |             |     |     |   |                          |                            |
| The Netherlands  |                                    |                                         |               |                 |             |     |     |   |                          |                            |
| PESTAN           | Initial screening                  | based on a                              | Very          | no spatial      | no          | yes | no  |   | no                       | http://www.epa.            |
|                  | to estimate the                    | closed-form                             | simplifie     | dimen-          |             |     |     |   | (no spatial              | gov/ada/downlo             |
|                  | vertical migration                 | analytical                              | d,            | sioning         |             |     |     |   | approach)                | ad/models/pesta            |
|                  | of dissolved org.                  | solution of the                         | Steady-       |                 |             |     |     |   |                          | n.pdf                      |
|                  | solutes through                    | advective-                              | state         |                 |             |     |     |   |                          |                            |
|                  | the vadose zone                    | dispersive-                             | flow          |                 |             |     |     |   |                          |                            |
|                  | to groundwater                     | reactive transport                      | conditio      |                 |             |     |     |   |                          |                            |
|                  |                                    | equation.                               | ns            |                 |             |     |     |   |                          |                            |
|                  |                                    |                                         | assume        |                 |             |     |     |   |                          |                            |
|                  |                                    |                                         | d             |                 |             |     |     |   |                          |                            |

| Pload                       |                                                                                                                            | modelling pollution loads for                                                        |                | annual<br>average                               | yes | yes | yes | maps of soils,<br>topography, | no<br>(only annual            | Endreny et al.,<br>2003                                                               |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------|-------------------------------------------------|-----|-----|-----|-------------------------------|-------------------------------|---------------------------------------------------------------------------------------|
| Environmental<br>Protection |                                                                                                                            | watersheds, point and non-point                                                      |                |                                                 |     |     |     | land use,<br>hydrology,       | average)                      | Pload: 7                                                                              |
| Agency (EPA),               |                                                                                                                            | sources,                                                                             |                |                                                 |     |     |     | weather data,                 |                               |                                                                                       |
| USA                         |                                                                                                                            | including "best<br>managing<br>practices"                                            |                |                                                 |     |     |     | pollution loading             |                               |                                                                                       |
| POLA                        | Predicting                                                                                                                 | continuous                                                                           |                | Small                                           | yes | yes | no  |                               | no                            | Quilbé et al.                                                                         |
| (1997)                      | Agricultural                                                                                                               |                                                                                      |                | catchme                                         |     |     |     |                               | (no recent                    | 2006                                                                                  |
|                             | Diffuse Pollution                                                                                                          |                                                                                      |                | nts, daily                                      |     |     |     |                               | developments)                 |                                                                                       |
|                             | Fate                                                                                                                       |                                                                                      |                | time step                                       |     |     |     |                               |                               |                                                                                       |
| PRZM                        | modelling the pesticide movement                                                                                           |                                                                                      | field<br>scale |                                                 | no  | yes | ?   | ?                             | no (only field<br>scale)      | PRZM: 96                                                                              |
| PRZM3                       | Predict pesticide<br>transport<br>and<br>transformation<br>down through the<br>crop root and<br>unsaturated soil<br>zones. | Finite-difference<br>model;<br>Hydrologic and<br>chemical<br>transport<br>components |                | Daily,<br>monthly<br>or annual<br>time<br>steps | yes | yes | yes |                               | no<br>(no watershed<br>scale) | http://www.epa.<br>gov/ceampubl/g<br>water/przm3/prz<br>m3123/ABSTRA<br>CT.TXT<br>REM |

| QHM         | Watershed<br>management and<br>stormwater<br>design | Continuous,<br>water quality and<br>quantity                                      |                                                                                | 5 min to<br>24 h,<br>watershe<br>d scale | ?                                     | yes | yes | precipitation,<br>temperature,<br>flow                                                            | no (no nutrient simulation) | http://www.sciso<br>ftware.com/prod<br>ucts/qhm detail<br>ed/qhm detaile<br>d.html |
|-------------|-----------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------|---------------------------------------|-----|-----|---------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------|
| Qual2k (2e) |                                                     | river and stream<br>water quality                                                 | steady<br>state                                                                | small to<br>large                        | N, P,<br>C, O2,                       | no  | no  | ?                                                                                                 | no<br>(no catchment)        | Jun et al., 2007                                                                   |
| EPA, USA    |                                                     | model                                                                             | model,<br>no<br>diffuse<br>inputs<br>and no<br>catchm<br>ent<br>conside<br>red | rivers,<br>daily time<br>step            | Peri-<br>phyton<br>,<br>Patho<br>gens |     |     |                                                                                                   |                             | Qual2e:106                                                                         |
| REMM        | erosion and sediment                                | riparian<br>ecosystem                                                             | con-<br>siders                                                                 | hill slope,<br>field                     | C, N,<br>P                            | no  | yes | weather data, contributing                                                                        | no<br>(only field scale)    | Bhat et al., 2007                                                                  |
| USDA        | transport through<br>riparian forest<br>buffers     | management<br>model, quantifies<br>water quality<br>benefits of<br>riparian zones | buffer<br>strips<br>only                                                       | scale,<br>daily time<br>step             |                                       |     |     | field/upland<br>input, riparian<br>zone size, soil<br>information,<br>riparian<br>vegetation data |                             | Remm: 28                                                                           |

| SACADEAU      | Simulate pesticide transfer | Biophysical transfer model |        | 5-100<br>km² | no (?) | yes | yes |   | no (no nutrients,<br>more DSS than | http://www.cem<br>agref.fr/webgr/In |
|---------------|-----------------------------|----------------------------|--------|--------------|--------|-----|-----|---|------------------------------------|-------------------------------------|
|               | through the                 | coupled with 3             |        | catchme      |        |     |     |   | model)                             | dexGB.htm                           |
|               | catchment and               | sub models (a              |        | nt           |        |     |     |   |                                    |                                     |
|               | provide decision            | management                 |        | Daily        |        |     |     |   |                                    | http://www.umr-                     |
|               | aid                         | model, a climate           |        | time step    |        |     |     |   |                                    | lisah.fr/mhydas/i                   |
|               |                             | model and a                |        |              |        |     |     |   |                                    | ndex.php?page                       |
|               |                             | spatial model)             |        |              |        |     |     |   |                                    | =oview⟨=e                           |
|               |                             | opalial modely             |        |              |        |     |     |   |                                    | <u>n</u>                            |
| SHETRAN       | pollution control,          |                            | only   | small to     | yes    | yes | ?   | ? | no (only hourly                    | Lunn et al.,                        |
| University of | sediment and                |                            | hourly | meso         | 900    | 900 |     |   | time step)                         | 1996                                |
| Newcastle, UK | nitrogen transport          |                            | time   | scale        |        |     |     |   |                                    | 1000                                |
|               |                             |                            | step   | water-       |        |     |     |   |                                    | Shetran: 36                         |
|               |                             |                            | otop   | sheds        |        |     |     |   |                                    |                                     |
| STONE         | modelling the               | nutrient emission          |        | national     | N, P   | no  | yes | ? | no                                 | Wolf et al., 2003                   |
|               | nutrient                    | modelling system           |        | and          | ,      |     | ĺ   |   | (only annual                       | ,                                   |
| Alterra,      | emissions from              | 3-,                        |        | regional     |        |     |     |   | average)                           | Stone: 5                            |
| Department of | agriculture                 |                            |        | scale,       |        |     |     |   | <b>3</b> ,                         |                                     |
| soil and Land |                             |                            |        | annual       |        |     |     |   |                                    |                                     |
| use, The      |                             |                            |        | time step    |        |     |     |   |                                    |                                     |
| Netherlands   |                             |                            |        |              |        |     |     |   |                                    |                                     |

| SWAT          | integrated        | modelling          | Small to   | N, P   | yes | yes | maps of land       | yes                | Santhi et al., |
|---------------|-------------------|--------------------|------------|--------|-----|-----|--------------------|--------------------|----------------|
|               | hydrological      | hydrology,         | large      |        |     |     | use,               | -                  | 2005; Schuol & |
| USDA, USA;,   | modelling of      | pesticide and      | catch-     |        |     |     | topography,        | for Ic-nitrate and | Abbaspour,     |
| public domain | nitrate load,     | nutrient cycle,    | ments,     |        |     |     | soils, hydrology,  | Aquisafe conta-    | 2006           |
|               | impact of water   | erosion and        | daily time |        |     |     | weather data       | minant issue       |                |
|               | quality plans     | sediment           | step       |        |     |     | (precipitation,    |                    | SWAT: 685      |
|               |                   | transport          |            |        |     |     | solar radiation,   |                    |                |
|               |                   |                    |            |        |     |     | wind velocity,     |                    |                |
|               |                   |                    |            |        |     |     | temperature),      |                    |                |
|               |                   |                    |            |        |     |     | water quality      |                    |                |
|               |                   |                    |            |        |     |     | data/discharge     |                    |                |
|               |                   |                    |            |        |     |     | data at the        |                    |                |
|               |                   |                    |            |        |     |     | (sub)basins        |                    |                |
|               |                   |                    |            |        |     |     | outlet             |                    |                |
| SWIM          | integrating       | modelling the      | meso-      | N-, P- | no  | yes | maps of land       | yes                | Post et al.,   |
|               | wetlands and      | hydrological       | scale      | cycle  |     |     | use, soils,        | -                  | 2007; Hatter-  |
| PIK, Germany; | riparian zones in | cycle, vegetation  | water-     |        |     |     | hydrology,         | for Ic-nitrate     | mann et al.,   |
| USDA, USA;    | river basin       | growth, erosion,   | sheds      |        |     |     | weather data       | issue              | 2005, 2006     |
| public domain | modelling, global | nutrient transport | (100-      |        |     |     | (prec., sol. rad., |                    |                |
|               | change impacts    |                    | 20000      |        |     |     | wind vel.,         |                    | SWIM: 19       |
|               | in the Elbe basin |                    | km²),      |        |     |     | temp.), water      |                    |                |
|               |                   |                    | daily time |        |     |     | quality data/      |                    |                |
|               |                   |                    | step       |        |     |     | discharge data     |                    |                |
|               |                   |                    |            |        |     |     | at the (sub-)      |                    |                |
|               |                   |                    |            |        |     |     | basins outlet      |                    |                |

| TELEMAC     | dam break        | hydrodynamics,      | the     | small to | yes | no | no | river geometry   | no             | Hervouet, 2000,   |
|-------------|------------------|---------------------|---------|----------|-----|----|----|------------------|----------------|-------------------|
|             | simulation in    | water quality,      | catch-  | large    |     |    |    | (hydraulic       | (no catchment) | Normant, 2000     |
| EDF, France | France,          | sediment            | ment is | rivers   |     |    |    | gradient,        |                |                   |
|             | modelling        | transport in rivers | not in- |          |     |    |    | roughness etc.), |                | Telemac: 25 (for  |
|             | sediment         |                     | cluded  |          |     |    |    | river discharge  |                | rivers/ channels) |
|             | transport in the |                     |         |          |     |    |    | etc.             |                |                   |
|             | Loire Estuary,   |                     |         |          |     |    |    |                  |                |                   |
|             | France           |                     |         |          |     |    |    |                  |                |                   |
| TNT(2)      | studying nitrate | fully distributed   |         | small    | N   | no | no | maps of land     | no             | Beaujouan et al.  |
| INRA Rennes | fluxes on small  | hydrological        |         | catch-   |     |    |    | use, topo-       | (no management | 2001              |
| France      | catchments       | model               |         | ments    |     |    |    | graphy, soils,   | practices      |                   |
|             |                  |                     |         |          |     |    |    | hydrology,       | available)     | TNT: 2            |
|             |                  |                     |         |          |     |    |    | weather data     |                |                   |
|             |                  |                     |         |          |     |    |    | (precipitation,  |                |                   |
|             |                  |                     |         |          |     |    |    | solar radiation, |                |                   |
|             |                  |                     |         |          |     |    |    | wind velocity,   |                |                   |
|             |                  |                     |         |          |     |    |    | temperature),    |                |                   |
|             |                  |                     |         |          |     |    |    | water quality    |                |                   |
|             |                  |                     |         |          |     |    |    | data/ discharge  |                |                   |
|             |                  |                     |         |          |     |    |    | data at the      |                |                   |
|             |                  |                     |         |          |     |    |    | (sub)basins      |                |                   |
|             |                  |                     |         |          |     |    |    | outlet           |                |                   |

| WASIM-ETH     | modelling the     | hydrological     | no nu-   | small to | no               | no | no  | maps of land      | no             | Kleinn et al.,  |
|---------------|-------------------|------------------|----------|----------|------------------|----|-----|-------------------|----------------|-----------------|
|               | hydrology of      | model            | trients/ | large    |                  |    |     | cover, soils,     | (no nutrients) | 2005; Jasper et |
| ETH Zurich,   | glacier           |                  | con-     | catch-   |                  |    |     | topography,       |                | al., 2004       |
| Switzerland   | catchments,       |                  | tami-    | ments    |                  |    |     | hydrology,        |                |                 |
|               | impact of land    |                  | nants    |          |                  |    |     | weather data      |                | Wasim: 38       |
|               | use changes to    |                  | in-      |          |                  |    |     |                   |                |                 |
|               | the water balance |                  | cluded   |          |                  |    |     |                   |                |                 |
| WasMod        | modelling         | WAter and        |          | meso-    | N, P,            | no | yes | maps of land      | yes            | Widen-Nilsson   |
|               | impacts of land   | Substance        |          | scale    | С                |    |     | cover, soils,     | -              | et al., 2007    |
| University of | use changes for   | simulation MODel |          | catch-   |                  |    |     | topography,       | for Ic-nitrate |                 |
| Jena, Germany | watershed         |                  |          | ments    |                  |    |     | hydrology,        | issue          | WasMod: 12      |
|               | management        |                  |          |          |                  |    |     | weather data,     |                |                 |
|               |                   |                  |          |          |                  |    |     | water quality     |                |                 |
|               |                   |                  |          |          |                  |    |     | /discharge data   |                |                 |
|               |                   |                  |          |          |                  |    |     | at the            |                |                 |
|               |                   |                  |          |          |                  |    |     | (sub)basins       |                |                 |
|               |                   |                  |          |          |                  |    |     | outlet            |                |                 |
| WASP          | examination of    | Water Analysis   | the      | small to | N, P,            | no | no  | external nutrient | no             | James et al.,   |
|               | eutrophication of | Simulation       | catch-   | large    | O <sub>2</sub> , |    |     | loads,            | (no catchment) | 1997            |
| EPA, USA;     | the Tampa Bay,    | Program for      | ment is  | river    | detritu          |    |     | temperature,      |                |                 |
| public domain | phosphorus loa-   | aquatic systems  | not in-  | systems  | S,               |    |     | solar radiation   |                | Wasp: 33        |
|               | ding to Lake      |                  | cluded   |          | phyto-           |    |     |                   |                |                 |
|               | Okeechobee        |                  |          |          | plankt           |    |     |                   |                |                 |
|               |                   |                  |          |          | on               |    |     |                   |                |                 |

| WHI Unsat | Compilation of 5 | graphic          | no     | one-     | no | yes | no | diverse | no           | http://www.sciso |
|-----------|------------------|------------------|--------|----------|----|-----|----|---------|--------------|------------------|
|           | one-dimensional  | environment for  | catchm | dimensio |    |     |    |         | (one-        | ftware.com/prod  |
|           | groundwater flow | combination of   | ent    | nal      |    |     |    |         | dimensional) | ucts/whiunsat_o  |
|           | and contaminant  | different models | model  |          |    |     |    |         |              | verview/whiunsa  |
|           | transport models |                  |        |          |    |     |    |         |              | t_overview.html  |

### Appendix B Fact Sheets on the 7 pre-selected models

# Name: Drainage, Runoff and Spraydrift Input of Pesticides in Surface Waters Acronym: DRIPS

| Main medium              | terrestrial                                                                                                                                                                                                                                                                                                             |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Main subject             | hydrology, ecotoxicology                                                                                                                                                                                                                                                                                                |
| Type of model            | not specified                                                                                                                                                                                                                                                                                                           |
| Main application         | decision support                                                                                                                                                                                                                                                                                                        |
| Data requirements        | thematic maps: land use, soil type and grain size, annual<br>precipitation, frequency of heavy rain, river basin districts and<br>subbasins, frequency of receiving waters, proportion of drained<br>agricultural fields, administrative units                                                                          |
|                          | databases: amount and timing of pesticide application, areas under cultivation, physico-chemical properties of active agents                                                                                                                                                                                            |
|                          | measured concentrations of pesticides in surface waters                                                                                                                                                                                                                                                                 |
| Graphical User Interface | yes                                                                                                                                                                                                                                                                                                                     |
| GIS                      | yes                                                                                                                                                                                                                                                                                                                     |
| Ownership                | open source                                                                                                                                                                                                                                                                                                             |
| Uncertainty analysis     | existing tool                                                                                                                                                                                                                                                                                                           |
| Institution/Authors      | University of Giessen, Institute for resource management                                                                                                                                                                                                                                                                |
|                          | Röpke, B., Bach, M., Frede, Prof. Dr. HG.                                                                                                                                                                                                                                                                               |
| Homepage                 | no                                                                                                                                                                                                                                                                                                                      |
| Year, Country            | 2004, Germany                                                                                                                                                                                                                                                                                                           |
| Keywords                 | watershed, management, basin scale, spatially distributed,<br>runoff, water quality, pollutant transport, climate change,<br>vegetative changes, resevoir management, groundwater<br>withdrawals, water transfer, nutrient cycling, erosion, sediment<br>transport, continuous-time, multiple subbasins, capacity<br>42 |

cascade soil water model , Priestley-Taylor evapotranspiration, Curve-Number-runoff, GIS-interface, soil database

Model ObjectivesRisk assessment concerning predicted environmental<br/>concentrations (PEC) of pesticides caused by diffuse pollution<br/>(surface runoff, tile drainage and spraydrift). The model works<br/>on a catchment scale with a special resolution of 1km².

ApproachDRIPS is based on different models which quantify diffuse<br/>pollution from pesticides. Runoff, tile drainage and spraydrift<br/>are simulated in different independent modules.<br/>Leaching: The model PELMO is used to assess the amount of<br/>pesticides transported by leaching. Here only drained areas are<br/>considered to influence surface waters, since the contamination<br/>of surface water by contaminated groundwater is assumed to<br/>be minor.

Processes modelled processes are surface runoff, tile drainage and spraydrift.

#### References

Röpke, B., Bach, M. and Frede, H.G., 2004. DRIPS – a decision support system estimating the quantity of diffuse pesticide pollution in German river basins. Water Science and Technology. 49(3):149-156.

All information compiled from Röpke et al., 2004

| Main medium                  | terrestrial. aquatic                                                                                                                                                                                                                                                                                                                      |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Main subject:                | hydrology, biogeochmistry                                                                                                                                                                                                                                                                                                                 |
| Type of model                | dynamic mass-balance model                                                                                                                                                                                                                                                                                                                |
| Main application             | research                                                                                                                                                                                                                                                                                                                                  |
| Data requirements            | Subbasin division and coupling, altitude and land cover<br>distribution, precipitation and temperature data, soil leaching<br>concentration for each landcover type, lake depths,<br>atmospheric N-deposition on water surfaces, emissions from<br>rural households and point-sources (i.e., wastewater treatment<br>plants, industries). |
|                              | time-series of observed water discharge and concentrations at some site),                                                                                                                                                                                                                                                                 |
| Graphical User Interface     | yes                                                                                                                                                                                                                                                                                                                                       |
| GIS                          | yes                                                                                                                                                                                                                                                                                                                                       |
| Ownership                    | open source only for research purpose                                                                                                                                                                                                                                                                                                     |
| Uncertainty analysis         | no information                                                                                                                                                                                                                                                                                                                            |
| Institution/Authors          | Swedish Meteorological and Hydrological Institute (SMHI)                                                                                                                                                                                                                                                                                  |
| Homepage                     | www.smhi.se/sgn0106/if/hydrologi/hbv_np.htm                                                                                                                                                                                                                                                                                               |
| Year, Country                | 1994, Sweden                                                                                                                                                                                                                                                                                                                              |
| Keywords<br>Model Objectives | watershed, basin scale, management, nutrient transport,<br>landuse changes, climate change<br>Simulation of nitrogen (N) and phosphorus (P) transport and<br>transformation at catchment scale (from 1 to > 1 000 000 km <sup>2</sup> ).<br>Estimation of transport, retention and source apportionment,                                  |

separation of natural impact from anthropogenic and evaluation of climate and management scenarios.

HBV-NP runs at a daily time-step, including all sources in the catchment coupled to the water balance

ApproachIt is based on the hydrological HBV model, which gradually has<br/>been extended to simulate N transport (Bergström et al. 1987,<br/>Brandt 1990, Arheimer & Wittgren 1994, Arheimer & Brandt,<br/>1998). VASTRA - the Swedish Water Management Research<br/>Programme – has recently come up with the P routine.

The river basin may be separated into a number of coupled subbasins, for which the calculations are made independently, which gives the spatial distribution of the model results.

Processeshydrological part (i.e. HBV-96): snowmelt and accumulation of<br/>snow, soil moisture, lake routing and runoff response, free<br/>parameters (calibrated against observed time-series of river<br/>discharge and riverine nutrient concentrations).

<u>nutrient routine:</u> soil leaching concentrations are assigned to the water percolating from the unsaturated zone to the response reservoir of the hydrological HBV model. Field scale models (e.g. SOILN or ICECREAM) extended with macropore flow are used to simulate nutrient leakage from different kinds of crops and management practices. For P soil surface erosion and water transport is considered as well, applying a GISbased model component (e.g. DelPi).

Nutrient load from point-sources (rural households, industries, and wastewater treatment plants) is considered.

Atmospheric deposition is considered over lake surfaces, whereas deposition on land is implicitly included in the soilleaching. Residence, transformation and transport of N and P in groundwater, rivers, wetlands and lakes are simulated. Stream bank erosion, as well as sedimentation and suspension processes in the rivers are taken into consideration. Equations for the nutrient turnover processes are largely based on empirical relations between physical parameters and concentration dynamics. Modelled fractions are: dissolved inorganic nitrogen (DIN), dissolved organic nitrogen (DON), particulate phosphorus (PP), and soluble reactive phosphorus (SRP). Simultaneous calibration of water balance and nutrient concentrations is possible (Pettersson et al., 2001).

Applications large-scale studies, covering southern Sweden (145 000 km<sup>2</sup> divided into 3700 catchments; Arheimer and Brandt, 1998), the country of Sweden (450 000 km<sup>2</sup> divided into 1000 subbasins; the TRK project), and the Baltic Sea drainage basin (~1 720 000 km<sup>2</sup> divided into 30 subbasins; Pettersson et al., 2000).

more detailed studies, as for the Genevadsån River (200 km<sup>2</sup> divided into 70 subbasins; Arheimer & Wittgren, 2002; Arheimer et al, 2003). Additionally, the model has been applied in Matsalu River in Estonia (Lidén et al., 1999), and in the rivers Neckar and Warnow in Germany (Fogelberg, 2003).

Costs Application to one catchment requires about 2 weeks work of an experienced modeller if necessary database is already available. Database setup may be time-consuming. (Field-scale models of arable root-zone leaching may take an additional 2 months to set-up.)

#### **Technical Information**

Operating System: IHMS interface in a Windows environment.

Source-code: programming languages: Fortran

#### References

Andersson, L. & Arheimer, B., 2003. Modelling of human and climatic impact on nitrogen load in a Swedish river 1885-1994. *Hydrobiologia* 497: 37-45

Andersson, L. & Arheimer, B., 2001. Consequences of changed wetness on riverine nitrogen - human impact on retention vs. natural climatic variability. Regional Environmental Change 2:93-105.

Andersson, L., Hellström, M. & Persson, K., 2002. A nested model approach for phosphorus load simulation in catchments: HBV-P. In: Proceedings Nordic Hydrological Conference. Röros, Norway. August 2002, pp. 229-238.

Andersson, L., Persson, K. & Hellström, M., 2002. Fosfortransport och koncentrationer i vattendrag. Utveckling och test av modellverktyg för uppföljning av miljömål, samt scenarier av hur uppställda mål kan nås. VASTRA working paper. (In Swedish)

Andreasson, J., 2002. Skogsläckaget och retentionen av kväve norr om Dalälven. VASTRA working paper. (In Swedish)

Arheimer, B., 1998. Riverine Nitrogen - analysis and modelling under Nordic conditions. Ph.D. thesis. Kanaltryckeriet, Motala. pp. 200.

Arheimer, B. & Bergström, S., 1999. Modelling nitrogen transport in Sweden: influence of a new approach to runoff response. In: Heathwaite, L. (Ed.) Impact of Land-Use Change on Nutrient Loads from Diffuse Sources. International Association of Hydrological Sciences, IAHS Publication no. 257.

Arheimer, B. & Brandt, M., 1998. Modelling nitrogen transport and retention in the catchments of southern Sweden. *Ambio* 27(6):471-480.

Arheimer, B. & Brandt, M., 2000. Watershed modelling of non-point nitrogen pollution from arable land to the Swedish coast in 1985 and 1994. *Ecological Engineering* 14:389-404.

Arheimer, B. & Wittgren, H. B., 1994. Modelling the effects of wetlands on regional nitrogen transport. *Ambio* 23(6):378-386.

Arheimer, B. & Wittgren, H.B., 2002. Modelling Nitrogen Retention in Potential Wetlands at the Catchment Scale. *Ecological Engineering* 19(1):63-80.

Arheimer, B., Torstensson, G. & Wittgren, H.B, 2004. Landscape planning to reduce coastal eutrophication: Constructed Wetlands vs. Agricultural Practices. *Landscape and Urban Planning* 67(1-4):205-215.

Bergström, S., Brandt, M. & Gustafson, A., 1987. Simulation of runoff and nitrogen leaching from two fields in southern Sweden. *Hydrological Science Journal* 32(2-6):191-205.

Brandt, M. & Ejhed, H. 2003. TRK-Transport, Retention, Källfördelning. Belastning på havet. Swedish Environmental Protection Agency, Report No. 5247.

Brandt, M., 1990. Simulation of runoff and nitrogen transport from mixed basins in Sweden. *Nordic Hydrology*, 21:13-34.

Fogelberg, S., 2003. Modelling nitrogen retention at the catchment-scale: Comparison of HBV-N and MONERIS. Master thesis, Uppsala Technical University, Report (in press).

Hellström, 2002, DelPi. An ArcView GIS 3.x extension for Estimating diffuse Loads of Sediment and Phosphorus from arable catchments.

Johnsson, H., Bergström, L. & Jansson, P.-E., 1987. Simulated nitrogen dynamics and losses in a layered agricultural soil. *Agriculture, Ecosystems and Environment* 18:333-356.

Lidén, R., Vasilyev, A., Loigu, E., Stålnacke, P., Grimvall, A. & Wittgren, H. B., 1999. Nitrogen source apportionment - a comparison between a dynamic and a statistical model. *Ecological Modelling* 114:235-250.

Marmefelt, E., Arheimer, B. & Langner, J., 1998. An integrated biogeochemical model system for the Baltic Sea. *Hydrobiologia* 393:45-56.

Pettersson, A., Arheimer, B. & Johansson, B., 2001. Nitrogen concentrations simulated with HBV-N: new response function and calibration strategy. *Nordic Hydrology* 32(3):227-248.

Tattari, S., Bärlund, I., Rekolainen, S., Posch, M, Siimes, K., Tuhkanen, H-R, Yli-Halla, M., 2001. Modeling sediment yield and phosphorus transport in Finnish clayey soils. Transactions of the ASAE 44(2):297-307.

Wittgren, H. B., Gippert, L., Jonasson, L., Pettersson, A., Thunvik, R., & Torstensson, G., 2001. An actor game on implementation of environmental quality standards for nitrogen. In: Steenvoorden, J., Claessen, F. & Willems, J. (Eds) Agricultural Effects on Ground and Surface Waters. IAHS Publ. no. 273.

All information compiled from Register of Ecological Models (http://eco.wiz.uni-kassel.de/model\_db/mdb/hspf.html) and www.smhi.se/sgn0106/if/hydrologi/hbv\_np.htm

# Name: Hydrological Simulation Program - FORTRAN Acronym: HSPF

| Main medium              | aquatic, terrestrial                                                                                                                                                                                                                                                                        |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Main subject             | hydrology                                                                                                                                                                                                                                                                                   |
| Type of model            | partial differential equations, ordinary differential equations                                                                                                                                                                                                                             |
| Data requirements        | input data: DEM, meteorological data (precipitation, solar<br>radiation, wind velocity, temperature, relative humidity), time<br>series of P application,<br><u>maps</u> : land use map, soil map<br><u>validation data</u> : discharge data and P concentrations<br><u>management data</u> |
| Graphical User Interface | no                                                                                                                                                                                                                                                                                          |
| GIS                      | yes                                                                                                                                                                                                                                                                                         |
| Ownership                | open source                                                                                                                                                                                                                                                                                 |
| Uncertainty analysis     | no information                                                                                                                                                                                                                                                                              |
| Institution/Authors      | United States Environmental Protection Agency (USEPA)<br>Center for Exposure Assessment Modeling (CEAM)<br>Johansen, N.B., J.C. Imhoff, J.C. Kittle, and A.S. Donigian                                                                                                                      |
| Homepage                 | www.epa.gov/ceampubl/swater/hspf/index.htm                                                                                                                                                                                                                                                  |
| Year, Country            | 1997, USA                                                                                                                                                                                                                                                                                   |
| Keywords                 | basin, watershed, hydrology, pollutants, contaminant runoff,<br>fate, transport, water quality, sediment, organic chemicals,<br>biodegradation, continuous-time, spatially distributed, multiple<br>subbasins, process based, toxicity                                                      |
| Model Objectives:        | Johansen et al. (1984) developed the Hydrological Simulation<br>Program - FORTRAN (HSPF) model to simulate both basin<br>hydrology and water quality.                                                                                                                                       |

|           | continuous-time model                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Approach: | HSPF simulates watershed hydrology and water quality for<br>conventional and toxic organic pollutants by simulating<br>contaminant runoff, instream water quality and sediment<br>interactions. The watershed-scale ARM and NPS models are<br>integrated into a basin-scale analysis framework which includes<br>fate and transport in one dimensional stream channels.                                                                                             |
|           | The catchment is divided into smaller sections based on the land use type, which can each consist of pervious and impervious sections with different hydrological properties.                                                                                                                                                                                                                                                                                       |
|           | The model consists of 3 main modules and 5 utility modules:                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | <ul> <li>PERLND: hydrology and water quality processes on pervious land</li> <li>IMPLND: hydrology and water quality processes on impervious land</li> <li>RCHRES: processes on a single reach of an open channel or well mixed impoundment</li> </ul>                                                                                                                                                                                                              |
|           | The drawback of HSPF is that it is quite data intensive. An expert system for HSPF-parameters has been developed in order to facilitate parameter acquisition and model calibration. HSPF can be applied in basins up to about 180 000 km <sup>2</sup> , and the watershed can be divided into smaller subbasins. HSPF simulates three sediment types (sand, silt, and clay) in addition to a single organic chemical and transformation products of that chemical. |
| Processes | - Instream component: nitrogen and phosphorus movement,                                                                                                                                                                                                                                                                                                                                                                                                             |
|           | algae, phytoplankton, zooplankton, chemical processes                                                                                                                                                                                                                                                                                                                                                                                                               |
|           | (hydrolysis, biodegradation, and oxidation)                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | - Integrated simulation of land and soil contaminant runoff                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | processes with in-stream hydraulic and sediment-chemical                                                                                                                                                                                                                                                                                                                                                                                                            |
|           | interactions (only model that can do that)                                                                                                                                                                                                                                                                                                                                                                                                                          |
|           | - results: time history of the runoff flow rate, sediment load,                                                                                                                                                                                                                                                                                                                                                                                                     |
|           | nutrient and pesticide concentrations, water quantity and                                                                                                                                                                                                                                                                                                                                                                                                           |
|           | quality at any point in a watershed.                                                                                                                                                                                                                                                                                                                                                                                                                                |

## **Technical Information:**

| Executables: | Operating System: 16-bit MS-DOS            |
|--------------|--------------------------------------------|
| Source-code: | programming language: FORTRAN              |
| Manuals:     | www.epa.gov/ceampubl/swater/hspf/index.htm |

#### References

Johansen, N.B., Imhoff, J.C., Kittle, J.C. & Donigian, A.S., 1984. Hydrological Simulation Program - FORTRAN (HSPF): Users Manual Release 8, EPA-600/3-84-066, USEPA, Athens, GA.

Nasr, A., Bruen, M., Jordan, P., Moles, R., Kiely, G., Byrne, P. & O'Regan, B., 2004. Physicallybased, distributed, catchment modelling for estimating sediment and phosphorous loads to rivers and lakes: Issues of model complexity, spatial and temporal scales and data requirements. National Hydrology Seminar 2004.

Nasr, A., Bruen, M., Jordan, P., Moles, R., Kiely, G. & Byrne, P., 2007. A comparison of SWAT, HSPF and SHETRAN/GOPC for modelling phosphorus export from three catchments in Ireland. Water Research 41(5):1065-1073.

All information compiled from Register of Ecological Models (http://eco.wiz.uni-kassel.de/model\_db/mdb/hspf.html) and www.epa.gov/ceampubl/swater/hspf/index.htm

# Name: MIKE Système Hydrologique Européen Acronym: MIKE SHE

| Main medium              | terrestrial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Main subject             | hydrology, agriculture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Type of model            | deterministic, fully distributed, physically based                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Graphical User Interface | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| GIS                      | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ownership                | closed source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Uncertainty analysis     | existing tool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Institution/Authors      | Danish Hydraulic Institute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Homepage                 | ww.dhigroup.com/Software/WaterResources/MIKESHE<br>.aspx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Year, Country            | 1993, Denmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Keywords                 | watershed, basin scale, water resources management, human<br>impact on water resources, irrigation management, land use<br>changes, contaminant transport, nitrogen dynamics, DAISY                                                                                                                                                                                                                                                                                                                                                               |
| Model Objectives         | Analysis, planning and management of water resources, especially with respect to human impact catchment water quality.                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Approach                 | MIKE SHE is a dynamic modelling tool with a modular<br>structure, which allows independent use of each module and<br>adjustment to local conditions and data availability.<br>The model is applied for conjunctive use of water, surface<br>water groundwater interactions, water resources management,<br>irrigation management, land use changes, agricultural<br>practices, wetland protection, contaminant transport and the<br>investigation of well capture zones. Soil water and nitrogen<br>dynamics can be simulated by the model DAISY. |

|             | The catchment is divided horizontally into a network of grid |
|-------------|--------------------------------------------------------------|
|             | squares, which allows the inclusion of spatially varying     |
|             | parameters. Vertical variation is represented by different   |
|             | horizontal layers.                                           |
| Processes   | Interception/evapotranspiration, overland/channel flow,      |
|             | unsaturated zone, saturated zone, snow melt and the          |
|             | exchange between aquifers and rivers are modelled            |
| Application | about 150 applications all over Europe                       |
|             |                                                              |

#### **References (selection of most recent publications)**

Nagdeve, M.B., Ramteke, G.K., Kamble, P.A., "Hydrological water balance modelling for assessing productivity and irrigation planning", 2008, "WIT Transactions on Ecology and the Environment", 112, Conference Paper.

Thompson, J.R., Gavin, H., Refsgaard, A., Refstrup SÃ, renson, H., Gowing, D.J., "Modelling the hydrological impacts of climate change on UK lowland wet grassland", 2008, "Wetlands Ecology and Management", 1, 21, Article in Press

Hughes, J.D., Liu, J.,"MIKE SHE: Software for integrated surface water/ground water modeling",2008,"Ground Water",46,6,797-802,Short Survey.

Zhang, Z., Wang, S., Sun, G., McNulty, S.G., Zhang, H., Li, J., Zhang, M., Klaghofer, E., Strauss, P., "Evaluation of the MIKE SHE model for application in the Loess Plateau, China", 2008, "Journal of the American Water Resources Association", 44,5,, 1108, 1120,, 1.

Gupta, P.K., Singh, R., Raghuwanshi, N.S., Dutta, S., Panigrahy, S.,"Effect of remotely sensed data on the performance of a distributed hydrological model: Case study",2008,"Journal of Hydrologic Engineering",13,10,,939,947,Article.

Hammersmark, C.T., Rains, M.C., Mount, J.E., "Quantifying the hydrological effects of stream restoration in a Montane meadow, northern California, USA", 2008, "River Research and Applications", 24, 6, 735-753.

Valzquez, R.F., Willems, P., Feyen, J.,"Improving the predictions of a MIKE SHE catchment-scale application by using a multi-criteria approach",2008,"Hydrological Processes",22,13,,2159-2179.

Mernild, S.H., Hasholt, B., Liston, G.E., "Climatic control on river discharge simulations, Zackenberg River drainage basin, northeast Greenland", 2008, "Hydrological Processes", 22, 12, 1932-1948, 1.

Im, S., Kim, H., Kim, C., Jang, C., "Assessing the impacts of land use changes on watershed hydrology using MIKE SHE", 2008, "Environmental Geology", 1-9.

All information compiled from Arheimer & Olsson, 2005 and Thompson et al. 2004

# Name: Soil and Water Assessment Tool Acronym: SWAT

| Main medium              | terrestrial                                                                                                                                                                                                                                            |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Main subject             | hydrology, biogeochmistry                                                                                                                                                                                                                              |
| Type of model            | deterministic, semi-distributed                                                                                                                                                                                                                        |
|                          |                                                                                                                                                                                                                                                        |
| Main application         | decision support/expert system, research                                                                                                                                                                                                               |
| Data requirements        | <u>input data</u> : precipitation, temperature, solar radiation, air humidity, wind speed                                                                                                                                                              |
|                          | maps: land use, soil, topography                                                                                                                                                                                                                       |
|                          | validation data: discharge data, nitrate measurements                                                                                                                                                                                                  |
|                          | management data: amount of fertilizer/pesticide, days of operation                                                                                                                                                                                     |
| Graphical User Interface | yes                                                                                                                                                                                                                                                    |
| GIS                      | yes                                                                                                                                                                                                                                                    |
| Ownership                | open source                                                                                                                                                                                                                                            |
| Uncertainty analysis     | existing tool                                                                                                                                                                                                                                          |
| Institution/Authors      | United States Department of Agriculture, Agricultural Research Service and Texas A&M University                                                                                                                                                        |
|                          | Arnold, Allen, Bernhardt, Srinivasan, Muttiah, Walker, Dyke                                                                                                                                                                                            |
| Homepage                 | www.brc.tamus.edu/swat/index.html                                                                                                                                                                                                                      |
| Year, Country            | 1993, USA                                                                                                                                                                                                                                              |
| Keywords                 | watershed, management, basin scale, spatially distributed,<br>runoff, water quality, pollutant transport, climate change,<br>vegetative changes, reservoir management, groundwater<br>withdrawals, water transfer, nutrient cycling, erosion, sediment |

transport, continuous-time, multiple subbasins, capacity cascade soil water model , Priestley-Taylor evapotranspiration, Curve-Number-runoff, GIS-interface, soil database

- Model Objectives prediction of management effects (Climate and vegetative changes, reservoir management, groundwater withdrawals, water transfer) on water, sediment and chemical yields in large catchments. Analysis of watersheds and river basins of 100 square miles. Uses daily time step, continuous for 1-100 years.
- Approach subdivision of large river basins into homogenous parts, then analysis of each section and its interaction with the whole catchment. SWAT is spatially distributed, so that these parts can interact. Input consists of files, information from databases and information from a GIS interface.
- Background the model was developed by modifying the SWRRB, (Arnold et al, 1990) and ROTO (Arnold, 1990) models for application to large, complex rural basins. SWRRB is a distributed version of CREAMS, which can be applied to a basin with a maximum of 10 subbasins, and SWAT is an extended and improved version of SWRRB (several hundred subbasins)
- Processes simulation of hydrology, pesticide and nutrient cycling, erosion and sediment transport.

- hydrology model is based on water balance equation.

- overland flow runoff volume: distributed SCS curve number generated given by the standard SCS runoff equation (USDA, 1986).

- soil type, texture, depth and hydrologic classification: from soil database

- soil profiles can be divided into ten layers.
- Infiltration = precipitation runoff

- storage routing flow coefficient used to predict flow through each soil layer, with flow occurring when a layer exceeds field capacity. When water percolates past the bottom layer, it enters the shallow aquifer zone (Arnold et al., 1993).

- Channel transmission loss and pond/reservoir seepage replenishes the shallow aquifer while the shallow aquifer interacts directly with the stream. Flow to the deep aquifer system is effectively lost and cannot return to the stream (Arnold et al., 1993).

- irrigation algorithm developed for SWAT allows irrigation water to be transferred from any reach or reservoir to any other in the watershed.

- Sediment yield used for instream transport is determined from the Modified Universal Soil Loss Equation (MUSLE) (Arnold, 1992). For sediment routing in SWAT, deposition calculation is based on fall velocities of various sediment sizes.

- Rates of channel degradation are determined from Bagnold's (1977) stream power equation. Stream power also is accounted for in the sediment routing routine, and is used for calculation of re-entrainment of loose and deposited material in the system until all of the material has been removed.

**Applications** currently adapted only for US watersheds. The SWAT represents a component of the HUMUS project, where it is applied for 350 6-digit hydrologic unit areas in the 18 major river basins in the U.S. (Srinivasan et al., 1993b).

Krysanova et. al (1996) adopted large parts of SWAT for their model SWIM which they designed for the Elbe river basin in Northern Germany.

ProcessingThe SWAT/GRASS interface (Srinivasan, Arnold, 1993, Srinivasan et al.,<br/>1993a) extracts spatially distributed parameters of elevation, land use, soil<br/>types, and groundwater table. The interface creates a number of input<br/>files for the basin and subbasins, including the subbasin routing structure<br/>file.

Advanced visualization tools are capable of statistical analysis of output data. ArcGIS interface available.

#### **Technical Information:**

| Executables  | Operating System: UNIX (Solaris), PC (DOS, Windows) |
|--------------|-----------------------------------------------------|
| Source-code: | programming languages: Fortran                      |

#### References

Santhi, C., Arnold, J.G., Williams, J.R., Dugas, W.A., and Hauck, L. Validation of the SWAT model on a large river basin with point and nonpoint sources. *J. of American Water Resources Association* 37(5): 1169-1188. <u>Fontaine, T.A., Cruickshank, T.S., Arnold, J.G., Hotchkiss, R.H.</u>, 2002. Development of a snowfall-snowmelt routine for mountainous terrain for the soil water assessment tool (SWAT). *J. of Hydrology*262(1-4): 209-223.

Fritch, T. G., McKnight, C. L., Yelderman, J. C. Jr., Dworkin, S. I., Arnold, J. G., 2000. A predictive modeling approach to assessing the groundwater pollution susceptibility of the Paluxy Aquifer, Central Texas, using a geographic information system. *Environmental Geology* 39(9): 1063-1069

Saleh, A., Arnold, J.G., Gassman, P.W., Hauck, L.W., Rosenthal, W.D., Williams, J.R., and McFarland, A.M.S., 2000. Application of SWAT for the upper north Bosque watershed. Transactions of the ASAE 43(5): 1077-1087.

Arnold, J.G., Srinivasan, R., Muttiah, R.S., Allen, P.M., and Walker, C., 1999. Continental scale simulation of the hydrologic balance. *J. American Water Resources Association* 35(5):1037-1052.

Srinivasan, R.S., Arnold, J.G., and Jones, C.A., 1998. Hydrologic modeling of the United States with the soil and water assessment tool. *Water Resources Development* 14(3):315-325.

Srinivasan, R., Ramanarayanan, T.S., Arnold, J.G., and Bednarz, S.T., 1998.Large area hydrologic modeling and assessment part II: model application. *J. American Water Resources Association* 34(1):91-101.

Arnold, J.G., Srinivasan, R., Muttiah, R.S., and Williams, J.R., 1998. Large area hydrologic modeling and assessment part I: model development. *J. American Water Resources Association* 34(1):73-89.

Arnold, J.G., 1992. Spatial Scale Variability in Model Developmentand Parameterization: Ph.D. Dissertation, Purdue University, WestLafayette, IN, 183 p.

Arnold, J.G., Allen, P.M. and Bernhardt, G.T., 1993. A Comprehensive Surface-Groundwater Flow Model: *Journal of Hydrology*, v. 142, p. 47-69.

Arnold, J.G., Engel, B.A. and Srinivasan, R., 1993: A Continuous Time, Grid Cell Watershed Model: *in* Proceedings of Application of Advanced Technology for the Management of Natural Resources, Sponsored by American Society of Agricultural Engineers, June17-19, 1993, Spokane, WA.

Arnold, J.G., Williams, J.R., Srinivasan, R., King, K.W. and Griggs, R.H., 1995: SWAT - Soil and Water Assessment Tool: Draft Users Manual, USDA-ARS, Temple, TX.

Srinivasan, R., and Arnold, J.G., 1993. Basin scale water quality modelling using GIS. Proceedings, *Applications of AdvancedInform. Technologies for Manag. of Nat. Res.* June 17-19, Spokane, WA, USA.

Srinivasan, R., Arnold, J.G., Muttiah, R.S., Walker C.and Dyke P.T., 1993. Hydrologic Unit Model for the United States (HUMUS). In: Sam S.Y.Wang (ed.) *Advances in Hydro-Science and - Engineering*, Vol. I.

USDA, 1992. STATSGO - State soils geographic data base. Soil Conservation Service, Publ. Number 1492, Washington D.C.

All information compiled from Register of Ecological Models (http://eco.wiz.uni-kassel.de/model db/mdb/hspf.html) and www.brc.tamus.edu/swat/index.html

## Name: Soil and Water Integrated Model Acronym: SWIM

#### **General Information**

- Main medium: terrestrial
- Main subject: hydrology, biogeochmistry
- Type of model: not specified
- Main application: research

Data requirements:spatial data:Digital Elevation Model with an appropriate<br/>resolution, land use, soil map, ground water recession map

<u>relational data</u>: climate data (daily precipitation, average, minimum and maximum air temperature, solar radiation, rainfall intensity parameters); hydrological data (river runoff in the basin outlet, river cross-sections or mean river width and depth in subbasin outlets, hydraulic structure (for regulated rivers)); soil data base (depth of the layer, clay, silt and sand content, bulk density, porosity, available water capacity, field capacity, organic carbon content, organic N content, saturated conductivity); crop management parameters (day of operation, operation code (planting, fertilization, irrigation, harvesting, etc.), crop number (from crop data base), day of fertilization, amount of N and P applied per hectare, irrigation code)

| Graphical User Interface: | yes                                                     |
|---------------------------|---------------------------------------------------------|
| GIS                       | yes                                                     |
| Ownership:                | open source                                             |
| Uncertainty analysis:     | existing tool                                           |
| Institution/Authors       | Potsdam Institute for Climate Impact Research (PIK)     |
|                           | SWIM: V. Krysanova, DI. Müller-Wohlfeil, A.Becker (PIK) |

SWAT-Modules: J.G. Arnold, P.M. Allen, G.T. Bernhardt,R. Srinivasan, R.S. Muttiah, C. Walker, P.T. Dyke, 1993, USDA& Texas A&M University

MATSALU-Modules: V. Krysanova, A. Meiner, J. Roosaare, A. Vasilyev, 1989, Estonian Ac. Sci.

Year, Country 2000, Germany

Keywords watershed, basin scale, spatially distributed, runoff, groundwater, water quality, crop growth, nutrient cycling, nutrient transport, erosion, sediment transport, climate change, land use change, continuous-time, multiple subbasins, multiple hydrotops, three level spatial disaggregation, Priestley-Taylor evapotranspiration, modified Curve-Number-runoff, GIS, GRASS interface, soil database, SWAT

Model Objectives Simulation of the hydrological cycle, erosion, vegetation growth and nutrient transport in mesoscale watersheds (100 to 20,000 km<sup>2</sup>); Analysis of climate change and land use change impacts on hydrology and water quality at a regional scale. A daily time step is used. SWIM can be used either for hydrological modelling only, or for integrated hydrological/crop, hydrological/erosion, hydrological/water quality modelling.

Approach A three-level scheme of spatial disaggregation "basin subbasins - hydrotops" is implemented. SWIM/GRASS interface is used to initialize the model by extracting distributed parameters of elevation, land use, soil (maximum 10 soil layers), climate, and to create hydrotop structure and routing structure files.

- subdivision of the basin into subbasins (10-100km<sup>2</sup>). Boundaries can be obtained from existing maps or created in GIS
- hydrotops are sketched within every subbasin, based on land use and soil types (hydrotop = units in a subbasin with unique land use and soil type).

SWAT/GRASS interface is adopted and modified (Steps 3 & 4) to extract spatially distributed parameters of elevation, land use, soil types, groundwater table and to generate hydrotop structure and routing structure files. A number of input files for the basin and subbasins is obtained.

Three-step modelling procedure:

- 1. water and nutrient balance are calculated for every hydrotop
- outputs are averaged (weighted average) to estimate the subbasin output, (not accounting for lag time in the case of surface runoff, and assuming average for subbasin lag time for subsurface flow)
- 3. routing procedure is applied to the subbasin outputs, taking into account transmission losses.
- Background: SWIM is based on two previously developed models SWAT and MATSALU. Both models could not be applied at German watersheds to several reasons. The main reason is connection of SWAT to specific American data sets (especially for soil, weather, and crop rotation parameters), and not sufficient transferability of MATSALU (a system of four coupled models disigned for the Matsalu Bay watershed in Estonia). SWIM contains modules from both models and tries to combine their benefits (hydrological submodel and GRASS interface from SWAT; spatial disaggregation scheme and nutrient modules from MATSALU), while avoiding overparametrization.
- Processes:hydrological processes:precipitation, snow melt, evapotranspiration,surface runoff, lateral subsurface flow (interflow), percolation to ground<br/>water, ground water contribution to streamflow, streamflow routing.

<u>geo- and hydrochemical processes</u>: input of fertilizers, mineralization, denitrification and nitrification, sorption/desorption (for phosphorus), crop uptake of nutrients, leaching to ground water, transport with surface flow, transport with subsurface flow. For more information on each process see http://eco.wiz.uni-kassel.de/model db/mdb/swim.html.

#### **Technical Information:**

Executables: Operating System: UNIX uses the Geo Information System GRASS.

**Source-code:** programming languages:

- SWIM/GRASS interface: C
- SWIM: Fortran

Manual: www.pik-potsdam.de/research/publications/pikreports/.files/pr69.pdf

#### References

Krysanova, V., Müller-Wohlfeil, D.I. & Becker, A., 1998. *Development and test of a spatially distributed hydrological / water quality model for mesoscale watersheds.* Ecological Modelling 106 (1-2), 261-289.

Krysanova, V., Becker, A. & Klöcking, B. 1998. The linkage between hydrological processes and sediment transport at the river basin scale. In W.Summer E.Klaghover, W.Zhang (eds.) Modelling Soil Erosion, Sediment Transport and Closely Related Hydrological Processes. IAHS Publications no. 249, p. 13-20.

Krysanova, V. & Becker, A., 1999. Integrated Modelling of Hydrological Processes and Nutrient Dynamics at the River Basin Scale, *Hydrobiologia* 410, 131-138.

Krysanova, V., Wechsung, F., Becker, A., Poschenrieder W. & Gräfe J., 1999. Mesoscale ecohydrological modelling to analyse regional effects of climate change, *Environmental Modelling and Assessment* 4, 259-271.

Krysanova, V., Gerten, D., Klöcking, B., & Becker, A., 1999. Factors affecting nitrogen export from diffuse sources: a modelling study in the Elbe basin. In: L. Heathwaite (ed.) Impact of Land-Use Change on Nutrient Loads from Diffuse Sources, IAHS Publications no. 257, p. 201-212.

Krysanova, V., Wechsung, F., Meiner, A. & Vasilyev, A., 1999. Land use change in Europe and implications for agriculture and water resources. In: Ü. Ennuste, L. Wilder (eds.) Harmonisation with the western economics: Estonian developments and related conceptual and methodological frameworks, Estonian Institute of Economics at Tallinn Technical University, 361-384.

Wechsung, F., Krysanova, V., Flechsig M. & Shaphoff, S. 2000. May land use change reduce the water deficiency problem caused by reduced brown coal mining in the state of Brandenburg? *Landscape and Urban Ecology* 51(2-4): 177-189.

Krysanova, V., Williams, J., Bürger, G. & Österle, H., 1999. Linkage between hydrological processes and sediment transport at the river basin scale - a modelling study. UNESCO Technical Report on Hydrological Processes and Soil Erosion (accepted).

Arnold, J.G., Allen, P.M., & Bernhardt, G.T., 1993. A Comprehensive Surface-Groundwater Flow Model. *Journal of Hydrology*, v. 142, p. 47-69.

Arnold, J.G., Engel, B.A. & Srinivasan, R., 1993. A Continuous Time, Grid Cell Watershed Model: *in* Proceedings of Application of Advanced Technology for the Management of Natural Resources, Sponsored by American Society of Agricultural Engineers, June17-19, 1993, Spokane, WA.

Arnold, J.G., Williams, J.R., Srinivasan, R., King, K.W.& Griggs, R.H., 1995. SWAT - Soil and Water Assessment Tool: Draft Users Manual, USDA-ARS, Temple, TX.

Krysanova, V. & Luik, H. (eds.) 1989a: Simulation modelling of a system watershed - river - sea bay. Tallinn, Valgus, 428pp, (in Russian).

Krysanova, V., Meiner, A., Roosaare, J. & Vasilyev, A.1989b: Simulation modelling of the coastal waters pollution from agricultural watershed. *Ecological Modelling*, 49, 7-29.

Krysanova, V., Müller-Wohlfeil, D.I. & Becker, A., 1996.Mesoscale Integrated Modelling of Hydrology and Water Quality with GIS Interface. In: Proceedings of the Third International Conference and Workshop on Integrating Geographical Information Systems and Environmental Modeling, CD-ROM. Publisher: Santa Barbara,CA: National Center for Geographical Information and Analysis.

Krysanova, V., Müller-Wohlfeil, D.-I. & Becker, A., 1996. Integrated Modelling of Hydrology and Water Quality in Mesoscale Watersheds. PIK Report No.18, July 1996, 32p.

Krysanova, V., Müller-Wohlfeil, D.-I. & Becker A., 1996. Entwicklung eines integrierten Modells zur Hydrologie und Gewässergüte in mesoskaligen Einzugsgebieten und dessen Anwendung in Teileinzugsgebieten der Elbe, Tagungsband zum Vorseminar "Gewässer -Informationssysteme"-Datenmanagement und Modellierung von Stromlandschaften, Budweis, Tschechische Republik, 82-84.

Srinivasan, R. & Arnold, J.G., 1993. Basin scale water qualitymodelling using GIS. Proceedings, *Applications of AdvancedInform. Technologies for Manag. of Nat. Res.* June 17-19, Spokane,WA, USA.

All information compiled from Register of Ecological Models: http://eco.wiz.uni-kassel.de/model\_db/mdb/hspf.html

# Name: Water and Substance Simulation Model Acronym: WASMOD

| Main medium              | aquatic, terrestrial                                                                                                                                                                                                                                                                                         |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Main subject             | biogeochemistry, hydrology, (eco)toxicology                                                                                                                                                                                                                                                                  |
| Type of model            | ordinary differential equations, partial differential equations, difference equations                                                                                                                                                                                                                        |
| Main application         | research                                                                                                                                                                                                                                                                                                     |
| Data requirements        | Climate data, GIS layers of soil, relief, land use, river network, sub-catchments and relief units                                                                                                                                                                                                           |
| Graphical User Interface | no                                                                                                                                                                                                                                                                                                           |
| GIS                      | yes                                                                                                                                                                                                                                                                                                          |
| Ownership                | open source                                                                                                                                                                                                                                                                                                  |
| Uncertainty analysis     | no existing tool                                                                                                                                                                                                                                                                                             |
| Institution/Authors      | Christian-Albrechts-University, Kiel                                                                                                                                                                                                                                                                         |
|                          | Ernst-Walter Reiche                                                                                                                                                                                                                                                                                          |
| Year, Country            | 1994, Germany                                                                                                                                                                                                                                                                                                |
| Keywords                 | soil water dynamics, groundwater, carbon dynamics, nitrogen<br>dynamics, soil temperature, eco-system research, pesticides,<br>heavy metals, GIS, Bornhöveder Seenkette                                                                                                                                      |
| Model Objectives         | Simulation of water and nutrient dynamics at local scale or regional scale for whole catchments.                                                                                                                                                                                                             |
| Approach                 | WASMOD is based on modules. Parameters are allocated to<br>different spatial sections in order to label vegetation, relief and<br>soil characteristics as well as agricultural techniques.<br>Depending on that the process description takes place in a<br>variety of hierarchical organized spatial units. |

The coupling with GIS results in simulations with high spatial and temporal resolution (<u>http://www.pz-oekosys.uni-kiel.de/~ernst/wasmod/wasmod.html</u>)

Processes The description of the different transport and transformation processes is related to the vegetation, the soil surface, the rooted soil layers as well as the saturated and unsaturated zones. The simulation of the transport processes is done 'quasi-3-dimensional', i.e. vertical and lateral transport processes are simulated successively per time step. In this model lateral transport happens only at the soil surface and in the aquifer.

#### References

Benecke, P., 1984. Der Wasserumsatz eines Buchen- und eines Fichtenwaldökosystems im Hochsolling. - Schriftenreihe aus der Forstl. Fakultät der Universität Göttingen und der Nieders. Versuchsanstalt 77.

Benne, I., Heineke, H.J. & Nettelmann, R., 1990. Die DV-gestützte Auswertung der Bodenschätzung -Erfassungsanweisung und Übersetzungsschlüssel. Hannover. - Niedersächsisches Landesamt f. Bodenforschung (Techn. Ber. zur NIBIS-Bodenkunde).

BOSSEL, H.; SCHÄFER, H. 1989: Generic simulation model of forest growth carbon and nitrogen dynamics and application to tropical acacia and European spruce. - Ecological Modelling 48: 221-265.

BRAUN, G. 1975: Entwicklung eines physikalischen Wasserhaushaltsmodells für Lysimeter. -Mitteilungen Lichtenweiß Institut für Wasserbau der TU Braunschweig 49: 1-38.

DUYNISVELD, W.H.M. 1984: Entwicklung und Aufwendung von Simulationsmodellen für den Wasserhaushalt und den Transport von gelösten Stoffen in wasserungesättigten Böden. - Dissertation, Berlin.

ERNSTBERGER, H. 1987: Einfluß der Landnutzung auf Verdunstung und Wasserbilanz. - Dissertation, Gießen.

FRÄNZLE, O.; BRUHM, I.; GRÜNBERG, K.U.; JENSEN-HUSS, K.; KUHNT, D.; MICH, N.; MÜLLER, F.; REICHE, E.-W. 1987: Darstellung der Vorhersagemöglichkeiten der Bodenbelastung durch Umweltchemikalien. - Umweltforschungsplan des Bundesministers für Umwelt Naturschutz und Reaktorsicherheit.

FRÄNZLE, O.; ZÖLITZ-MÖLLER, R.; BOEDEKER, D.; BRUHM, I.; HEINRICH, U.;

JENSEN-HUSS, K.; KLEIN, A.; KOTHE, P.; MICH, N.; REICHE, E.-W.; REIMERS, T.; SAAGER, W. 1991: Erarbeitung und Erprobung einer Konzeption für die ökologisch orientierte Planung auf der Grundlage der regionalisierenden Umweltbeobachtung am Beispiel Schleswig-Holsteins. - Forschungsbericht 10902033 im Umweltforschungsplan des Bundesministers für Umwelt, Naturschutz und Reaktorsicherheit. UBA-Texte 20/92.

FLEISCHMANN, J. 1992: Verfahren zur Aggregierung räumlicher Daten in einem Geoinformationssystem als Grundlage für gebietsbezogene Wasser- und Stoffbilanzmodelle. - Diplomarbeit, Kiel.

HAGIN, J.; AMBERGER, A. 1974: Contribution of fertilizers and manures to the N- and P-load of waters. A computer simulation. - Report Deutsche Forschungsgemeinschaft.

HALUSZCAK, S.; VETTER, L.; SCHRÖDER, W. 1991: Dehydrogenaseaktivität in konven- tionell und biologisch bewirtschafteten Böden unterschiedlicher Nutzung. - Schr. Naturwiss. Ver. Schlesw.-Holst. 61: 55-80.

HANSEN, S.; JENSEN, H.E.; NIELSEN, N.E.; SVENDSEN, H. 1990: Daisy - A soil, plant, atmosphere system model. - NPO-Research Report No. A 10. The national agency of environmental protection. Copenhagen, Denmark.

HAUDE, W. 1954: Zur praktischen Bestimmung der potentiellen Evaporation und Evapotranspiration. - Mitteilungen d. DWD 8 (Bad Kissingen).

HERTLING, T. 1990: Das Verhalten ausgewählter Umweltchemikalien in repräsentativen Böden Großbritanniens. - Diplomarbeit, Kiel.

HOFFMANN, F. 1988: Ergebnisse von Simulationsrechnungen mit einem Bodenstickstoff-modell zur Düngung und zum Zwischenfruchtanbau in Trinkwasserschutzgebieten. - Zeitschrift f. Pflanzenernähr. u. Bodenk. 151: 281-87.

HOFFMANN, F. 1995: FAGUS, a model for growth and development of beech. - Ecol. Modelling 83(3): 327-348.

HÖRMANN, G.; IRMLER, U.; PIOTROWSKI, J.A.; REICHE, E.-W.; SCHERNEWSKI, G.; SCHIMMING, C.-G.; SCHRAUTZER, J.; WINDHORST, W. 1992: Ökosystemforschung im Bereich der Bornhöveder Seenkette. - Arbeitsbericht 1988-1991. EcoSys 1.

HOSENFELD, F. 1992: Entwicklung von Schnittstellen zwischen ORACLE-Datenbanksystem und Simulationsmodellen. - Diplomarbeit, Kiel.

HOYNINGEN-HUENE, J.F.V. 1983: Die Interzeption des Niederschlags in landwirtschaftli-chen Pflanzenbeständen. Schriftenreihe des Deutschen Verbandes für Wasserwirtschaft und Kulturbau e.V. 57: 1-53.

JENKINSON, D.S.; HART, P.B.S.; RAYNER, J.H.; PARRY, L.C. 1987: Modelling the turnover of organic matter in longterm experiments at Rothamsted. - Intercol. Bulletin 15: 1-18.

JONES, C.A.; KINREY, J.R. (eds) 1986: CERES-Maize. A simulation model of maize-growth and development. - Texas A&M University Press, College station.

KERRINNES, A. 1994: Vergleichende Untersuchungen zur Heterogenität der Wasser- und Stickstoffhaushaltsgrößen anhand von Modellauswertungen in einem Waldökosystem des Bornhöveder Seengebietes. - Diplomarbeit, Kiel.

KUTSCH, W. 1994: Untersuchungen zur Bodenatmung zweier Ackerstandorte im Bereich der Bornhöveder Seenkette. - Dissertation, Kiel.

MÜLLER, F. 1987: Geoökologische Untersuchungen zum Verhalten ausgewählter Umweltchemikalien im Boden. - Dissertation, Kiel.

MÜLLER, F., REICHE, E.-W. 1990: Modellhafte Beschreibung der Wasser- und Stoffdyna- mik in Böden. - Schr. Naturwiss. Ver. Schlesw.-Holst. 60: 83-107.

REICHE, E.-W. 1985: Untersuchungen zur Schwermetalldynamik in Agrarökosystemen unter besonderer Berücksichtigung der Eintragsarten. - Diplomarbeit, Kiel.

REICHE, E.-W. 1991: Entwicklung, Validierung und Anwendung eines Modellsystems zurBeschreibung und flächenhaften Bilanzierung der Wasser- und Stickstoffdynamik in Böden. - Kieler Geographische Schriften, 79: 1-150.

REICHE; E.-W. 1994: Modelling water and nitrogen dynamics on catchment scale. - Ecologi- cal Modelling 75/76: 371-384.

REICHE, E.-W. 1995: Ein Modellsystem zur Erstellung regionaler Wasser- und Stoffbilanzen. - In: OSTENDIRF, B. (Hrsg.): Räumlich differenzierte Modellierung von Ökosystemen. - Bayreuther Forum Ökologie 13: 121-128.

REICHE, E.-W.; SCHLEUSS, U. 1992: Untersuchungen zur Aussagegenauigkeit von Daten der Bodenschätzung anhand der Ergebnisse einer aktuell durchgeführten Bodenkartierung mit Hilfe eines Geographischen Informationssystems (GIS). - Mitteilgn. Dtsch. Bodenkundl. Gesellsch. 67: 249-252.

REICHE, E.-W.; MÜLLER, F. 1994: Regionalisierender Einsatz von Simulationsmodellen. - In: SCHRÖDER, W.; VETTER, L.; FRÄNZLE, O. (Hrsg.): Neuere statistische Verfahren und Modellbildung in der Geoökologie. Braunschweig, Wiesbaden.

REICHE, E.-W.; SCHIMMING, C.-G.; METTE, R.; SCHRAUTZER, J. 1995: Nitrogen balances of Ecosystems, landscapes and watersheds. - Proceedings of the International Nitrogen Workshop. University of Gent (in print).

REUSS, J.O.; JOHNSON, D.W. 1986: Acid deposition and the acidification of soils and waters. - Springer Verlag, Berlin S. 1-119.

ROLSTON, D.E.; BROADBENT, F.E. 1977: Field measurement of denitrification. - EPA-600/2-77-23 Us E.P.A. Ada, Oklahoma, 75.

SCHIMMING, C.-G.; METTE, R.; REICHE, E.-W.; SCHRAUTZER, J.; WETZEL, H. 1995: Stickstofflüsse in einem typischen Agrarökosystem Schleswig-Holsteins. Meßergebnisse, Bilanzen, Modellvalidierung. - Z. f. Pflanzenernähr. u. Bodenk. (im Druck).

SCHRAUTZER, J.; ASSHOFF, M.; MÜLLER, F. 1995: Degeneration and restoration of wetgrasslands in Northern Germany - Integrating theoretical, empirical and modelling approaches. -In: VERHOEVEN, J.T.A. (ed.): Ecological Engineering for Ecosystem Restoration. - Report of a 2-day workshop in Ziest, the Netherlands, 28-29 November 1995: 31-36.

SCHÜTT, T. V. 1992: Nährstoffauswaschung durch Dränwasser in ausgewählten Ökosyste- men Schleswig-Holsteins. - Diplomarbeit, Kiel.

SPRANGER, T. 1992: Erfassung und ökosystemare Bewertung der atmosphärischen Deposi- tion und weiterer oberirdischer Stoffflüsse im Bereich der Bornhöveder Seenkette. Beiträge zur Ökosystemforschung. - EcoSys Suppl., Bd. 4, Kiel.

VETTER, L. 1989: Evaluierung und Entwicklung statistischer Verfahren zur Auswahl von repräsentativen Untersuchungsobjekten für ökotoxikologische Problemstellungen. - Dissertation, Kiel.

WARFVINGE, P.; HOLMBERG, M.; POSCH, M.; WRIGHT, R.F. 1992: The use of dynamic models to set target loads. - AMBIO Vol. 21, No. 5: 369-376.

WILLNOW, A. 1993: Die mikrobielle Aktivität ausgewählter Stadtböden Kiels. - Diplomar- beit, Kiel.

WITTKEMPER, S. 1995: Die modellmäßige Erfassung des Sickerwassertransportes von Umweltchemikalien als Beitrag zur Expositionsabschätzung. - Diplomarbeit, Kiel.

All information compiled from www.pz-oekosys.uni-kiel.de/~ernst/wasmod/wasmod.html and www.dilamo.de/wasmod/wasmod.html